
Dependently Typed Programming with Finite Sets

Denis Firsov Tarmo Uustalu
Institute of Cybernetics at Tallinn University of Technology

Akadeemia tee 21, 12618 Tallinn, Estonia
{denis,tarmo}@cs.ioc.ee

Abstract
Definitions of many mathematical structures used in computer sci-
ence are parametrized by finite sets. To work with such structures
in proof assistants, we need to be able to explain what a finite set is.
In constructive mathematics, a widely used definition is listability:
a set is considered to be finite, if its elements can be listed com-
pletely. In this paper, we formalize different variations of this def-
inition in the Agda programming language. We develop a toolbox
for boilerplate-free programming with finite sets that arise as sub-
sets of some base set with decidable equality. Among other things
we implement combinators for defining functions from finite sets
and a prover for quantified formulas over decidable properties on
finite sets.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.4 [Software
Engineering]: Software/Program Verification—correctness proofs;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verify-
ing and Reasoning about Programs

Keywords certified programming; finite sets; dependently typed
programming; Agda; Kuratowski finiteness; Bishop finiteness

1. Introduction
Many definitions of structures used in computer science are param-
etrized by finite sets. For example, in the theory of formal lan-
guages, a deterministic finite automaton is defined as a 5-tuple

M = (Q, Σ, δ, q0, F),

where Q is a finite set of states, Σ is a finite set of letters (alphabet),
δ is a transition function from Q × Σ to Q, q0 is an initial state
and F is a set of accepting states. To work with such concepts in
proof assistants like Agda [13], which is the language we use in
this paper, we need to be able to say what a finite set is.

One standard way to state that some set X is finite is to provide
a list containing all elements of X. In our example, if the alphabet
is binary (Σ := B,), then the list false :: true :: [] together
with a proof that every truth value is contained in this list establish
finiteness of Σ. Another (equivalent) option is to provide a surjec-
tion from the set [0..n) for some n ∈ N. In our case, we can do

with the function from [0..2) that sends 0 to false and 1 to true
together with a proof that this function is surjective.

In what follows, we define an example taken from quantum
computing [12], the Pauli group on 1 qubit (with the global phase
quotiented out), as a datatype with 4 nullary constructors. We also
implement equality decision and the group operation to highlight
the weak points of this straightforward approach and show the
boilerplate code that we would like to reduce.

1.1 Extended Example
A finite set like the Pauli group can be defined as a datatype with a
nullary constructor for each element:

data Pauli : Set where
X : Pauli
Y : Pauli
Z : Pauli
I : Pauli

The constructors X, Y, Z, and I denote the four distinct elements of
the set Pauli.

To show that Pauli is finite (so that one can, for example,
iterate through all elements), we can provide a list:

listPauli : List Pauli
listPauli = X :: Y :: Z :: I :: []

We can prove that the list is complete:

allPauli : (x : Pauli) → x ∈ listPauli
allPauli X = here
allPauli Y = there here
allPauli Z = there (there here)
allPauli I = there (there (there here))

(Here, here is a proof of x ∈ x :: xs; and there p is a proof of
x ∈ y :: xs, if p is a proof that x ∈ xs.)

We could also prove that this list does not contain duplicates,
but this is not mandatory.

We continue our example by implementing equality decision for
elements of Pauli:

≡P? : (x1 x2 : Pauli) → x1 ≡ x2] ¬ (x1 ≡ x2)
X ≡P? X = inj1 refl
X ≡P? Y = inj2 λ()
X ≡P? Z = inj2 λ()
X ≡P? I = inj2 λ()
Y ≡P? X = inj2 λ()
Y ≡P? Y = inj1 refl
Y ≡P? Z = inj2 λ()
Y ≡P? I = inj2 λ()
Z ≡P? X = inj2 λ()
Z ≡P? Y = inj2 λ()
Z ≡P? Z = inj1 refl
Z ≡P? I = inj2 λ()

I ≡P? X = inj2 λ()
I ≡P? Y = inj2 λ()
I ≡P? Z = inj2 λ()
I ≡P? I = inj1 refl

(¬ P = P → ⊥, where ⊥ is the empty set; X] Y denotes the
disjoint sum of X and Y. () is called the absurd pattern and denotes
impossibility of a pattern.)

To conclude our example, we define the group operation:

· : Pauli → Pauli → Pauli
X · X = I
X · Y = Z
X · Z = Y
Y · X = Z
Y · Y = I
Y · Z = X
Z · X = Y
Z · Y = X
Z · Z = I
x · I = x
I · x = x

And we prove that it is commutative:

·-comm : (x1 x2 : Pauli) → x1 · x2 ≡ x2 · x1
·-comm X X = refl
·-comm X Y = refl
·-comm X Z = refl
·-comm X I = refl
·-comm Y X = refl
·-comm Y Y = refl
·-comm Y Z = refl
·-comm Y I = refl
·-comm Z X = refl
·-comm Z Y = refl
·-comm Z Z = refl
·-comm Z I = refl
·-comm I X = refl
·-comm I Y = refl
·-comm I Z = refl
·-comm I I = refl

It is important to realize that refl takes different implicit argu-
ments in different lines of the code above, so it cannot be shortened
to just one line ·-comm _ _ = refl. Actually, the code shown is
the shortest “direct” proof and requires full pattern matching. It is
easy to see that an associativity proof requires 64 lines of code.

We can see that the straightforward way of defining a finite set
as an enumeration type has a number of shortcomings:

1. When defining Pauli and listPauli, we effectively listed all
elements twice.

2. The proof of allPauli is verbose and dependent on the order
of elements in the list listPauli. All three definitions (Pauli,
listPauli, allPauli) must be kept consistent at all times,
when modifying the code.

3. The equality decider is not derived automatically and the man-
ual definition is verbose. The same would apply to duplicate-
freeness decision, if we wanted to implement it.

4. The proof of commutativity of the _·_ operation is dull, but
cannot be compressed.

Alternatively, to show that Pauli is finite, we can provide a
surjection from an initial segment of natural numbers. Let us first
introduce a family of sets for initial segments of the set of all natural
numbers. Fin n represents the set of first n natural numbers, i.e.,
the set of all numbers smaller than n.

data Fin : N → Set where
fzero : {n : N} → Fin (suc n)
fsuc : {n : N} → Fin n → Fin (suc n)

(In Agda, an argument enclosed in curly braces is implicit. The
Agda type-checker will try to figure it. If an argument cannot be
inferred, it must be provided explicitly.) fzero is smaller than
suc n for any n and, if i is smaller than n, then fsuc i is smaller
than suc n. As there is no number smaller than zero, Fin zero is
empty. (When there are no possible constructor patterns for a given
argument, one can pattern match on it with the absurd pattern ().)

Now, to show that Pauli is finite, we can define a function from
Fin 4 to Pauli:

f2p : Fin 4 → Pauli
f2p fzero = X
f2p (fsuc fzero) = Y
f2p (fsuc (fsuc fzero)) = Z
f2p (fsuc (fsuc (fsuc fzero))) = I
f2p (fsuc (fsuc (fsuc (fsuc ()))))

We can also define a function in the converse direction:

p2f : Pauli → Fin 4
p2f X = fzero
p2f Y = fsuc fzero
p2f Z = fsuc (fsuc fzero)
p2f I = fsuc (fsuc (fsuc fzero))

This allows us show that f2p is surjective by establishing

f2p-surj : (x : Pauli) → f2p (p2f x) ≡ x
f2p-surj X = refl
f2p-surj Y = refl
f2p-surj Z = refl
f2p-surj I = refl

In fact, f2p is not only a surjection, but even a bijection, but this is
not mandatory for finiteness. We have once more established that
Pauli is finite, however we introduced even more dependencies
than when defining Pauli, listPauli, and allPauli. Namely,
now the definitions of Pauli, f2p, p2f, and f2p-surj must all be
kept in agreement with each other.

In this paper, we set out to explore finite sets in the constructive
and dependently typed setting of Agda and develop an infrastruc-
ture for clean programming with finite sets.

In Section 2, we give some basic definitions regarding decid-
able propositions and also introduce effective squashing for such
propositions.

In Section 3, we introduce some notions of constructive finite-
ness of a set and of a subset of a set and explore how they are related
to each other. We present some conditions under which equality on
a finite set is decidable. Furthermore, we show that there are finite
subsets for which equality is undecidable.

Section 4 is devoted to a pragmatic approach for programming
with finite sets that arise as subsets of a base set with decidable
equality. In this approach, we are able to define a finite subset by
listing its elements once and automatically derive completeness and
decidable equality.

In Section 5, we show that the union, intersection, product and
disjoint sum of finite sets are finite.

In Section 6.1, we show that functions from finite sets can be
defined via tables. After that in Section 6.2, we introduce the notion
of predicate matching and show how it can be used for defining
functions on finite sets.

In Section 7, we implement a prover for quantified formulas
over decidable properties on finite sets.

We used Agda 2.4.2.2 and Agda Standard Library 0.9 for this
development. The full Agda code of this paper can be found at
http://cs.ioc.ee/~denis/finset/.

2. Basic Definitions
The predicate All X states that a given list xs contains all elements
of a set X (duplicates being allowed):

All : (X : Set) → List X → Set
All X xs = (x : X) → x ∈ xs

A proposition P is called decidable, if there is a proof of either
P or not P:

data Dec (P : Set) : Set where
yes : P → Dec P
no : ¬ P → Dec P

(Here yes and no are two constructors of the datatype Dec P. The
former takes a proof of P as its argument, while the latter takes a
proof of ¬ P.)

Now, we say that a set X has decidable equality, if there is
a function sending any elements x1 and x2 of X to a proof of
Dec (x1 ≡ x2):

DecEq : (X : Set) → Set
DecEq X = (x1 x2 : X) → Dec (x1 ≡ x2)

With these notations, the type of _≡P?_ from Section 1 can be
abbreviated to DecEq Pauli.

Similarly, we can define decidable list membership:

DecIn : (X : Set) → Set
DecIn X = (x : X) → (xs : List X) → Dec (x ∈ xs)

A proof of DecIn X is a function that, for any element x : X and a
list xs : List X, returns a proof of either x ∈ xs or its negation.
It is easy to verify that DecEq X and DecIn X are equivalent,
namely:

deq2din : {X : Set} → DecEq X → DecIn X

din2deq : {X : Set} → DecIn X → DecEq X

We also define a notion of a proposition P being a mere propo-
sition:

Prop : Set → Set
Prop P = (p1 p2 : P) → p1 ≡ p2

It says that P can have at most one proof.
Another basic predicate is NoDup, which expresses that a given

list xs is duplicate-free:

NoDup : {X : Set} → List X → Set
NoDup {X} xs = (x : X) → Prop (x ∈ xs)

Duplication-freeness of xs is the same as there being at most one
proof of membership in xs for every x : X.

If X has decidable equality, then All X and NoDup are decid-
able:

deq2dall : {X : Set} → DecEq X
→ (xs : List X) → Dec (All X xs)

deq2dnd : {X : Set} → DecEq X
→ (xs : List X) → Dec (NoDup xs)

If P is decidable, we can effectively define a squashed version
of P (i.e., quotient P by the total equivalence relation):

‖_‖ : {P : Set} → Dec P → Set
‖ yes _ ‖ = >
‖ no _ ‖ = ⊥

(Here > is the unit type: a singleton type with a unique element
tt.) Note that we are squashing P, not Dec P, however, we make
use of a proof that P is decidable. For example, we can observe that
the type

X ∈ X :: Y :: X :: []
is decidable. Moreover, there are two different proofs:

prf1 : Dec (X ∈ X :: Y :: X :: [])
prf1 = yes here

prf2 : Dec (X ∈ X :: Y :: X :: [])
prf2 = yes (there (there here))

So we can squash the type X ∈ X :: Y :: X :: [] in two different
ways: ‖ prf1 ‖ or ‖ prf2 ‖, but both evaluate to >.

It is easy to see that any two elements of a squashed type are
equal:

propSq : {P : Set} → (d : Dec P) → Prop ‖ d ‖
It is also important to note that one can always get a proof of P,

if the squashed version is inhabited:

fromSq : {P : Set} → (d : Dec P) → {‖ d ‖} → P

We have made the third argument (of type ‖ d ‖) implicit, since if
d proves Dec P, then the only possible value is the unique element
tt : > and the type-checker can derive it automatically.

3. Finiteness Constructively
3.1 Listable Sets
The best known and most used constructive notion of finiteness
of a set is listability (also sometimes called Kuratowski finiteness,
although Kuratowski [11] phrased his definition in different terms):
a set is finite, if its elements can be completely listed:

Listable : (X : Set) → Set
Listable X = Σ[xs ∈ List X]

All X xs

(In Agda, Σ[a ∈ A] B a is the type of dependent pairs of
an element a of type A and an element of type B a. Note the
unfortunate and confusing use of ∈ instead of : for typing the
bound variable in this notation.)

A close alternative idea is to require a surjection from an initial
segment of the set of natural numbers:

FinSurj : (X : Set) → Set
FinSurj X = Σ[n ∈ N]

Σ[fromFin ∈ (Fin n → X)]
Σ[toFin ∈ (X → Fin n)]
((x : X) → fromFin (toFin x) ≡ x)

The two notions are equivalent:

surj2lstbl : {X : Set}
→ FinSurj X → Listable X

lstbl2surj : {X : Set}
→ Listable X → FinSurj X

It is clear that, from listability of a set, one can learn an upper
bound on the number of its elements. (But in fact one can learn also
the actual cardinality, just wait a little.)

An a priori trimmer version of listability (sometimes called
Bishop-finiteness [6]) forbids duplicates:

ListableNoDup : (X : Set) → Set
ListableNoDup X = Σ[xs ∈ List X]

All X xs ×
NoDup xs

http://cs.ioc.ee/~denis/finset/

Alternatively, one may require a bijection from an initial seg-
ment of the set of natural numbers:

FinBij : (X : Set) → Set
FinBij X = Σ[n ∈ N]

Σ[fromFin ∈ (Fin n → X)]
Σ[toFin ∈ (X → Fin n)]
((x : X) → fromFin (toFin x) ≡ x) ×
((i : Fin n) → toFin (fromFin i) ≡ i)

These two notions of finiteness are also equivalent:

bij2lstblnd : {X : Set}
→ FinBij X → ListableNoDup X

lstblnd2bij : {X : Set}
→ ListableNoDup X → FinBij X

Quite clearly, from duplicate-free listability of a set, one can
extract its exact cardinality.

It is less obvious that all four notions of finiteness are equivalent.
The reason is that equality on a listable set is decidable:

lstbl2deq : {X : Set} → Listable X → DecEq X

We give the main idea behind the implementation of lstbl2deq.
If a set X is listable, then there exist a list xs and a function cmplt
that, for any element x : X, returns a proof that x ∈ xs. You can
think of this proof as a position of x in xs. Therefore, for any value
x, there is a split of xs such that xs ≡ xs1 ++ x :: xs2. Now, if
we need to check whether x1 : X and x2 : X are equal, we can
proceed as follows. We ask cmplt for two splits of xs: cmplt x1
gives a split xs ≡ xs1 ++ x1 :: xs2 and cmplt x2 gives a split
xs ≡ xs′ ++ x2 :: xs′′. Next, it is clear that if

length xs1 ≡ length xs′

then x1 ≡ x2. But what if length xs1 6≡ length xs′? If the
list xs were guaranteed to be duplicate-free, then this would im-
mediately imply that x1 6≡ x2, since there would then be a bijec-
tion between positions of xs and elements of X. However, in the
presence of duplicates, this argument does not work. Instead, we
observe that cmplt is a function of type (x : X) → x ∈ xs.
Therefore, for equal elements of X, it must deliver equal results.
With this observation, we can argue that if length xs1 is not
equal to length xs′ then x1 6≡ x2. Indeed, if x1 ≡ x2, then
cmplt x1, and cmplt x2 must give the same split contradicting
length xs1 6≡ length xs′.

As soon as list membership is decidable, we can implement
removal of duplicates:

remDup : {X : Set} → DecIn X → List X → List X

We show that remDup is complete. Namely, if some element be-
longs to the list, then at least one copy of that element is preserved
by remDup:

remDupComplete : {X : Set} → (_∈?_ : DecIn X)
→ (x : X) → (xs : List X)
→ x ∈ xs → x ∈ remDup ∈? xs

remDup is also sound—the resulting list does not contain any new
elements:

remDupSound : {X : Set} → (_∈?_ : DecIn X)
→ (x : X) → (xs : List X)
→ x ∈ remDup ∈? xs → x ∈ xs

And most importantly, the resulting list is free of duplicates:

remDupProgress : {X : Set} → (_∈?_ : DecIn X)
→ (xs : List X) → NoDup (remDup ∈? xs)

Now, with lstbl2deq and deq2din, we can prove that
Listable X implies ListableNoDup X, and the converse is a
triviality:

lstbl2lstblnd : {X : Set}
→ Listable X → ListableNoDup X

lstblnd2lstbl : {X : Set}
→ ListableNoDup X → Listable X

It is worth noticing that the proof lstbl2deq also provides an
alternative definition of an equality decider for listable types like
Pauli from Section 1:

listablePauli : Listable Pauli
listablePauli = listPauli , allPauli

deqPauli : DecEq Pauli
deqPauli = lstbl2deq listablePauli

Remember that the direct approach for defining decidable equality
on Pauli required us 42 lines of code.

3.2 Listable Subsets
A special case of sets are those defined as a subset of a larger set.
Here we have more variations of finiteness.1.

A subset of a base set U carved out by a predicate P : U → Set
is called subfinite, if there is a list containing all elements of U that
satisfy P (we call this property completeness):

ListableJunkSub : (U : Set) → (U → Set) → Set
ListableJunkSub U P = Σ[xs ∈ List U]

((x : U) → P x → x ∈ xs)

This notion of finiteness (which can only be formulated for subsets
of some base set, not for general sets) allows xs to contain also
elements not satisfying P. Therefore, we cannot even know whether
the subset is empty. But we have an immediate upper bound on the
number of elements in the subset: it is the length of the list xs.

A stronger notion of finiteness requires also soundness, i.e., a
proof that an element of U belongs to xs only if it satisfies the
predicate P (duplicates are still allowed):

ListableSub : (U : Set) → (U → Set) → Set
ListableSub U P = Σ[xs ∈ List U]

((x : U) → P x → x ∈ xs) ×
((x : U) → x ∈ xs → P x)

A listable subset can be checked for emptiness:

empty? : {U : Set}{P : U → Set}
→ (p : ListableSub U P)
→ Dec ((x : U) → ¬ x ∈? proj1 p))

Listable sets are a special case of listable subsets:

lstbl2lsub : {U : Set}
→ Listable U → ListableSub U (λ _ → >)

lsub2lstbl : {U : Set}
→ ListableSub U (λ _ → >) → Listable U

The always true predicate (λ _ → >) gives us the whole set U
as the subset, i.e., the base set U must itself be listable. This is a
special case of the situation where P has at most one proof for every
element x of U (P x is a mere proposition):

prop2lstbl2lsub : {U : Set}{P : U → Set}

1 We will generally speak of finiteness of a subset without actually con-
structing this subset as a set in its own right, since that would require us to
be able to squash arbitary propositions, not just decidable ones.

→ ((x : U) → Prop (P x))
→ Listable (Σ[x ∈ U] P x)
→ ListableSub U P

prop2lsub2lstbl : {U : Set}{P : U → Set}
→ ((x : U) → Prop (P x))
→ ListableSub U P
→ Listable (Σ[x ∈ U] P x)

3.3 Decidability of Equality on Listable Subsets
Let us define decidability of equality on the subset of U determined
by P as decidability of equality on U restricted to the elements
satisfying P:

DecEqSub : (U : Set) → (P : U → Set) → Set
DecEqSub U P

= (x1 x2 : U) → P x1 → P x2 → Dec (x1 ≡ x2)

In Section 3, we showed that listability of X implies decidable
equality on X. Now we give a more general version of that property,
namely, if, for any x : U there is at most one proof of P x, then
equality on the subset given by U and P is decidable.

deqLstblSub1 : {U : Set}
→ (P : U → Set)
→ ListableSub U P
→ ((x : U) → Prop (P x))
→ DecEqSub U P

The strategy of implementing deqLstblSub1 is similar to the
strategy of implementing lstbl2deq. If P defines a listable subset
of U, then we have a list xs containing all elements of U such that
P. We also have a proof of completeness of xs:

cmplt : (x : U) → P x → x ∈ xs.

If we want to check two elements x1 and x2 for equality, then
we are also given proofs p1 : P x1 and p2 : P x2. Clearly, if
cmplt x1 p1 and cmplt x2 p2 induce the same splits of xs,
namely, xs ≡ xs1 ++ x1 :: xs2, xs ≡ xs′ ++ x2 :: xs′′ and
length xs1 ≡ length xs′, then x1 ≡ x2. However, in the
case when the splits are different, we cannot use the argument that,
since cmplt is a function, there is only one split for each element.
The reason is that, generally, cmplt x may deliver different splits
for different proofs of P x. However, we have required that there
is a unique proof of P x for any x. Finally, we can conclude that, if
length xs1 6≡ length xs2, then x1 6≡ x2.

Actually, in this situation of P being a mere proposition, the in-
tended subset can be explicitly defined as the set Σ[x ∈ U] P x,
and we have decidable equality on this set:

deqLstblSub1’ : {U : Set}
→ (P : U → Set)
→ ListableSub U P
→ ((x : U) → Prop (P x))
→ (xp1 xp2 : Σ[x ∈ U] P x)
→ Dec (xp1 ≡ xp2)

Equality on the subset is also decidable, if P is decidable:

deqLstblSub2 : {U : Set}
→ (P : U → Set)
→ ((x : U) → Dec (P x))
→ ListableSub U P
→ DecEqSub U P

A further variation says that, if we know that the list of all
elements of U satisfying the predicate P is duplicate-free, then we
also have decidable equality on the subset:

deqLstblSub3 : {U : Set}
→ (P : U → Set)
→ (p : ListableSub U P)
→ NoDup (proj1 p)
→ DecEqSub U P

We conclude with a proof that there is no function turning any
proof of ListableSub U P into a decider of equality on elements
of U satisfying P:

deqLstblSub4 : {U : Set}
→ (P : U → Set)
→ ListableSub U P
→ DecEqSub U P

deqLstblSub4 = ???

Let us define the following list of functions from booleans to
booleans:

listB2B : List (Bool → Bool)
listB2B = fun1 :: fun2 :: fun3 :: []

where
fun1 : Bool → Bool
fun1 _ = true

fun2 : Bool → Bool
fun2 _ = false

fun3 : Bool → Bool
fun3 b = if b then true else true

The list listB2B consists of three functions. The functions fun1
and fun3 always return true, however they are not propositionally
equal, unless we assume function extensionality. The function fun2
always returns false.

Then we specify a subset of functions of type Bool → Bool
by the following predicate B2B:

B2B : (Bool → Bool) → Set
B2B f = f ∈ listB2B

Next, we prove that the predicate B2B defines a listable subset.
Clearly, it is just the set of functions from the list listB2B:

listableB2B : ListableSub (Bool → Bool) B2B
listableB2B = listB2B , (λ x p → p) , (λ x p → p)

So, now we could try to write a function that decides equality of
elements of listableB2B:

deqB2B : (f1 f2 : Bool → Bool)
→ B2B f1
→ B2B f2
→ Dec (f1 ≡ f2)

deqB2B = ???

Given f1 and f2 together with p1 : B2B f1 and p2 : B2B f2,
we can pattern-match on p1 and p2. Some cases are unproblem-
atic: e.g., if p1 = here and p2 = here, then f1 = fun1 and
f2 = fun1, so it is trivial that f1 ≡ f2. Similarly, if p1 = here
and p2 = there here, then f1 = fun1 and f2 = fun2 and
hence ¬ (f1 ≡ f2). But there is the critical case of p1 = here
and p2 = there (there here). Then f1 = fun1 and
f2 = fun3 and there is simply no correct answer to return, as
the two functions are not equal propositionally (unless function
extensionality is assumed), but also not inequal.

We have argued that it is impossible to prove deqLstblSub4.
This also implies that the notion of a listable set is stronger than the
notion of a listable subset, which in turn is stronger than the notion
of a subset listable with junk.

4. Pragmatic Finite Sets
In this section, we aim at a pragmatic approach to programming
with finite sets. Our objective is to be able to specify a finite set
by listing the intended elements just once. From specification, we
want to obtain a listable set with no additional work. Our solution is
to specify the finite set as a subset of some base set with decidable
equality.

4.1 Motivation and Definition
In Section 1, we saw that the straightforward approach to defining
the Pauli group as a datatype with nullary constructors and prov-
ing that it is finite required us to list the elements of Pauli mul-
tiple times and also provide verbose proofs of completeness and
decidability of equality. Next, we go through a number of steps, to
motivate a more pragmatic approach.

As we have seen, a predicate P on a base set U defines a subset.
If there is a list of elements containing all elements of U satisfying
P and no others, then we have a listable subset:

step1 : {U : Set} → (P : U → Set)
→ (xs : List U)
→ ((x : U) → x ∈ xs → P x)
→ ((x : U) → P x → x ∈ xs)
→ ListableSub U P

Next, we observe that we can create a listable subset from any
list xs over U by taking P to be (λ x → x ∈ xs):

step2 : {U : Set} → (xs : List U)
→ ListableSub U (λ x → x ∈ xs)

step2 = xs , (λ x i → i) , (λ x i → i)

A good thing is that the proofs of soundness and completeness are
now trivial. But the elements of the subset are dependent pairs of
an element x of U and a proof of membership (position) of x in xs.

Next we can ask for decidable list membership on U to be able
to effectively squash sets x ∈ xs:

step3 : {U : Set} → (_∈?_ : DecIn U)
→ (xs : List U)
→ ListableSub U (λ x → ‖ x ∈? xs ‖)

Now an element of the subset is a pair of an element of U and an
element of a squashed type (which, if it exists, is unique!).

By theorem prop2lsub2lstbl from Section 3.2, the type

Σ[x ∈ U] ‖ x ∈? xs ‖
must be listable.

Given these considerations, we can define a datatype of descrip-
tions of finite sets as subsets of a base set with decidable equality:

data FinSubDesc (U : Set) (eq : DecEq U) :
Bool → Set where

fsd-plain : List U → FinSubDesc U eq true
fsd-nodup : (xs : List U) → {‖ nd? xs ‖}
→ FinSubDesc U eq false

where
nd? = deq2dnd eq

The datatype introduced is parametrized by a base set U, a decider
eq of equality on U, and is also indexed by a boolean flag b that
indicates whether the underlying list of elements is allowed to
contain duplicates. There are two constructors. The constructor
fsd-plain takes a list xs of elements of U as an argument. The
constructor fsd-nodup accepts a list xs as an argument only if
it is duplicate-free. It has also another, implicit argument, of a
squashed type. This type is inhabited if and only if xs contains no
duplicates. In other words, if xs is duplicate-free, then the type of

the implicit argument evaluates to the unit type and its value can be
inferred automatically. If xs contains duplicates, then the type of
the implicit argument evaluates to ⊥ and no value can be provided
for it.

There are pragmatic reasons to have two constructors for
FinSubDesc. If the user creates a relatively small subset of el-
ements (≤ 10000) using fsd-nodup, then the type-checker can
feasibly check that there are no duplicates. However, if the number
of elements is larger, then the price for maintaining the invariant of
no duplicates becomes too high. Remember that the complexity of
checking duplicate-freeness is quadratic in the length of the list.

We can now define the Pauli group as a subset of the set of all
characters:

MyPauli : FinSubDesc Char _≡C?_ false
MyPauli

= fsd-nodup (’X’ :: ’Y’ :: ’Z’ :: ’I’ :: [])

Since the list provided is without duplicates, the type of the implicit
argument

‖ nd? (’X’ :: ’Y’ :: ’Z’ :: ’I’ :: []) ‖
is evaluated to > by the type-checker and the value for this argu-
ment is derived automatically.

On the other hand, the following definition is rejected by the
type-checker, since ’X’ is listed twice and the type of the implicit
argument is evaluates to ⊥:

MyPauliBad : FinSubDesc Char _ ?
=_ false

MyPauliBad
= fsd-nodup (’X’ :: ’Y’ :: ’Z’ :: ’I’ :: ’X’ :: [])

{???}

The hole needs to be filled with a proof of ⊥, which is impossible.
However, we can drop the requirement of no duplicates (note the
change in the type):

MyPauliFixed : FinSubDesc Char _ ?
=_ true

MyPauliFixed
= fsd-plain (’X’ :: ’Y’ :: ’Z’ :: ’I’ :: ’X’ :: [])

Now, we can define the actual set that a finite subset description
denotes:

toList : {U : Set}{eq : DecEq U}{b : Bool}
→ FinSubDesc U eq b → List U

toList (fsd-plain xs) = xs
toList (fsd-nodup xs) = xs

Elem : {U : Set}{eq : DecEq U}{b : Bool}
→ FinSubDesc U eq b → Set

Elem {U} {eq} D
= Σ[x ∈ U] ‖ x ∈? toList D ‖

where
∈? = deq2din eq

So an element of type Elem D for some finite subset description D
is a dependent pair of an element x of U together with a squashed
proof that x belongs to the list of elements defining the subset.
Using the squashed membership type allows us to ignore the exact
position(s) of the element in the list.

For example, we could refer to one of the elements of MyPauli
as the identity:

identity : Elem MyPauli
identity = (’I’ , _)

The second component of the pair (the type-checker infers that it
must be tt) is actually a squashed proof of the fact that I belongs
to the set MyPauli. Without squashing, we would need to refer to

I by its position, namely,

(’I’, there (there (there here))).

Clearly, we want to avoid such fragile dependencies.
On the other hand, the type-checker will accept a non-element

of the list only if the user manages to provide a proof of ⊥.

bad : Elem MyPauli
bad = (’W’ , ???)

4.2 Finite Subsets are Listable
Our next step is to show that, for all D : FinSubDesc U eq b,
the corresponding subset of U, namely, Elem D, is listable.

First, we generate a list of elements of Elem D:

listElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (D : FinSubDesc U eq b)
→ List (Elem D)

Second, we show that listElem D is complete, it contains all
elements of Elem D:

allElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (D : FinSubDesc U eq b)
→ (xp : Elem D) → xp ∈ listElem D

Third, we observe that listElem D does not introduce any dupli-
cates:

ndElem : {U : Set}{eq : DecEq U}
→ (D : FinSubDesc U eq false)
→ NoDup (listElem D)

Finally, we show that Elem D is listable:

lstblElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (D : FinSubDesc U eq b)
→ Listable (Elem D)

lstblElem D = listElem D , allElem D

This also implies decidable equality on Elem D:

deqElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (f : FinSubDesc U eq b)
→ DecEq (Elem D)

deqElem D = lstbl2deq (lstblElem D)

4.3 Finite Subsets from Lists
Now, we implement a function fromList which is parametrized
by the boolean b, so that user could decide if the duplicates should
be removed from the resulting finite subset:

fromList : {U : Set} → (eq : DecEq U)
→ (b : Bool) → List U → FinSubDesc U eq b

Basic set operations can now be defined on the underlying lists
of finite subsets. For example, the union is defined by concatenating
the underlying lists of argument subsets:

∪ : {U : Set}{eq : DecEq U}
→ {b1 b2 : Bool}
→ FinSubDesc U eq b1
→ FinSubDesc U eq b2
→ FinSubDesc U eq (b1 ∧ b2)

∪ {eq = eq} D1 D2
= fromList eq _ (toList D1 ++ toList D2)

Here is an example:

MyNats1 = fsd-nodup (1 :: 3 :: [])
MyNats2 = fsd-nodup (1 :: 6 :: [])

p : MyNats1 ∪ MyNats2 ≡ fsd-nodup (1 :: 3 :: 6 :: [])
p = refl

4.4 Finite Subset Monad
Finite subsets (of sets with decidable equality) are monad. We
explicate this structure on the level of FinSubDesc:

return : {U : Set}{eq : DecEq U}{b : Bool}
→ U → FinSubDesc U eq b

bind : {U V : Set}{eqU : DecEq U}
→ {eqV : DecEq V}{bU bV : Bool}
→ FinSubDesc U eqU bU
→ (U → FinSubDesc V eqV bV)
→ (b : Bool)
→ FinSubDesc V eqV b

A peculiarity of return and bind here is that they can work in two
different modes. If the boolean argument provided is false, then
duplicates will be removed the resulting finite subset description,
otherwise not. This allows the user to tune the monadic code for
the efficiency.

Wadler [16] identifies the structure needed for comprehending
monads. The missing bit is mzero:

mzero : {U : Set}{eq : DecEq U}{b : Bool}
→ FinSubDesc U eq b

mzero {b = true} = fsd-plain []
mzero {b = false} = fsd-nodup []

Using mzero, we define a conditional if_then_ and also some
syntactic sugar for bind:

if_then_ : {U : Set}{eq : DecEq U}{b : Bool}
→ Bool → FinSubDesc U eq b
→ FinSubDesc U eq b

if b then c = if b then c else mzero

syntax bind A (λ x → B) b
= for x ∈ A as b do B

As a result, we can write set comprehension code in for-loop
style. Let us look at an example. Mathematically, the intersection
of sets X and Y is defined as:

X ∩ Y = {x | x ∈ X, y ∈ Y, x = y}
With the combinators and syntactic sugar defined above, we can
write the following definition of subset intersection with compre-
hensions:

∩ : {U : Set}{eq : DecEq U} {b1 b2 : Bool}
→ FinSubDesc U eq b1 → FinSubDesc U eq b2
→ FinSubDesc U eq (b1 ∧ b2)

∩ {eq = _≡?_} X Y =
for x ∈ X as _ do

for y ∈ Y as true do
if b x ≡? y c then return x

5. Combinators
In this section, we define some general combinators for listable
subsets. The simplest combinator is for taking the union of two
listable subsets of the same base set:

union : {U : Set}{P Q : U → Set}
→ ListableSub U P
→ ListableSub U Q
→ ListableSub U (λ x → P x] Q x)

The definition just concatenates the underlying lists of the two
subsets and then adapts the proofs of completeness and soundness.

The intersection of two listable subsets is trickier, since it cannot
be defined generally for two arbitrary subsets. The reason is simple,
we need somehow to find the common elements. One possibility is
to ask equality on U to be decidable:

intersection’ : {U : Set}{P Q : U → Set}
→ DecEq U
→ ListableSub U P
→ ListableSub U Q
→ ListableSub U (λ x → P x × Q x)

But this assumption can be weakened by only asking one of the
predicates to be decidable.

intersection : {U : Set}{P Q : U → Set}
→ ((x : U) → Dec (P x))
→ ListableSub U P
→ ListableSub U Q
→ ListableSub U (λ x → P x × Q x)

This a weaker condition, because, if U has decidable equality, then
ListableSub U P implies decidability of P:

deq2lstbl2dp : {U : Set}{P : U → Set}
→ DecEq U
→ ListableSub U P
→ (x : U) → Dec (P x)

We also prove that the product and the disjoint sum of listable
subsets of two base sets are listable subsets of the product/disjoint
sum of the base sets:

product : {U : Set}{P : U → Set}
→ {V : Set}{Q : V → Set}
→ ListableSub U P
→ ListableSub V Q
→ ListableSub (U × V) < P , Q >

sum : {U : Set}{P : U → Set}
→ {V : Set}{Q : V → Set}
→ ListableSub U P
→ ListableSub V Q
→ ListableSub (U] V) [P , Q]

6. Function Definition
This section describes two different approaches for defining func-
tions from finite sets.

We observe that, if we want to define arbitrary functions from
some finite X to Y, then we must be able to compare the elements
of X and also for the function to be total we need the complete list
of those. Therefore, the right notion of finiteness for X is listability
(Listable X).

6.1 Tabulation
To define a function of type f : X → Y for some listable X, we
could explicitly provide a list of pairs (x , y). For example, if
X = { N , � , � } and Y = N then the list

(N , 1) :: (� , 10) :: (� , 100) :: []

could be interpreted as a function:

f : X → N
f N = 1
f � = 10
f � = 100

But not any list xys of type List (X × Y) can be turned into
a function. We need two additional properties:

1. For the function f to be total, each element of the domain must
appear in xys paired with some element of codomain. Formally,
we require All X (map proj1 xys).

2. For unambiguous interpretation, the list xys must not con-
tain multiple pairs with the same domain element. Formally,
NoDup (map proj1 xys)

For example:

bad1 = (N , 1) :: (� , 10) :: []
bad2 = (N , 1) :: (� , 10) :: (� , 0) :: []

The list bad1 violates the first requirement and the list bad2 vio-
lates both.

Now, we translate the above into Agda:

Tbl : Set → Set → Set
Tbl X Y = Σ[xys ∈ List (X × Y)]

All X (map proj1 xys) ×
NoDup (map proj1 xys)

An element of type Tbl X Y is a list of pairs of type X × Y with
some additional information, namely, proofs that the list of pairs is
complete and duplicate-free regarding the first components. Recall
that All X xs implies Listable X.

Since, for small tables, proofs of All X and NoDup can be
inferred by the type-checker, it makes sense to define the following
function for creating tables:

lstbl2dall : {X : Set} → Listable X
→ (xs : List X) → Dec (All X xs)

lstbl2dnd : {X : Set} → Listable X
→ (xs : List X) → Dec (NoDup xs)

createTbl : {X Y : Set} → (p : Listable X)
→ (xys : List (X × Y))
→ {‖ lstbl2dall p (map proj1 xys) ‖}
→ {‖ lstbl2dnd p (map proj1 xys) ‖}
→ Tbl X Y

If the list map proj1 xys contains all the elements of type X
and is without duplicates, then the implicit arguments need not be
supplied manually, since their types will be evaluated to > by the
type-checker, so that tt is the only possible value.

Next, we implement a function for tabulating functions from a
listable set:

toTbl : {X Y : Set} → Listable X
→ (X → Y) → Tbl X Y

Likewise, tables are convertible into functions:

fromTbl : {X Y : Set} → Tbl X Y → X → Y

We also show that converting back and forth between the two
representations of the function is harmless:

fromto : {X Y : Set}
→ (p : Listable X)
→ (f : X → Y)
→ (x : X)
→ fromTbl (toTbl p f) x ≡ f x

As a final example of this subsection, we write a conversion
function from Elem MyPauli to Pauli:

7→ : {U Y : Set}{eq : DecEq U}{b : Bool}
→ {D : FinSubDesc U eq b}
→ (x : U)
→ {‖ x ∈? toList D ‖}
→ Y → (Elem D × Y)

toPauli : Elem MyPauli → Pauli
toPauli = fromTbl (createTbl (lstblElem MyPauli)

(’X’ 7→ X ::
’Y’ 7→ Y ::
’Z’ 7→ Z ::
’I’ 7→ I :: []))

6.2 Predicate Matching
Assume that X is some finite set. How to implement in Agda a
function f : X → Y that is defined piecewise:

f(x) =


f1(x) if p1(x)
f2(x) if p2(x)
. . .

fn(x) if pn(x)

One possibility is to provide an explicit table as described in the
previous section. Unfortunately, if X is large this approach requires
a lot of manual work. Another possibility is to encode it directly by
nesting if_then_else_ expressions:

f x = if p1 x then f1 x
else if p2 x then f2 x

else if p3 x then f3 x
else ...

This approach is more concise than giving an explicit table, but it
suffers from several of drawbacks:

1. There is always the last else branch, which plays the role of a
“default” case. It will be applied to all elements which do not
satisfy the predicates P1....Pn. The “default” branch makes it
difficult to discover that some case was forgotten by mistake.

2. There is no good way of checking that the predicates cover all
elements of the finite set (i.e., that no elements in the domain
reach the “default” branch).

3. Also it is difficult to find whether there are perhaps some “dead”
branches which are not satisfied by any element of X.

In what follows, we address these issues and introduce a notion of
predicate matching.

We start by implementing a function unreached that takes a
list of predicates and a list of elements and returns the list of those
predicates that are not satisfied by any element:

unreached : {X : Set} → List (X → Bool)
→ List X → List (X → Bool)

unreached [] xs = []
unreached (p :: ps) xs =

if (any p xs) then rc else (p :: rc)
where

rc = unreached ps (filter (not ◦ p) xs)

It is important to note that at the recursive call we filter out the
elements that are satisfied by the head of the list of predicates.
It means that the order of predicates matters. A predicate is only
reached, if there is at least one element that satisfies it but does not
satisfy any preceding predicates. We formalize this in the following
soundness theorem:

unreachedSound : {X : Set}
→ (ps1 ps2 : List (X → Bool))
→ (p : X → Bool)
→ (xs : List X)
→ unreached (ps1 ++ p :: ps2) xs ≡ []
→ Σ[x ∈ X] x ∈ xs × p x ≡ true ×
((p’ : X → Bool) → p’ ∈ ps1 → p’ x ≡ false)

Soundness states that, if for some list xs, the list of predicates ps
contains no unreachable ones, then for any split of ps into three
parts, ps ≡ ps1 ++ p :: ps2, there exists at least one element x
that satisfies p but does not satisfy any of the predicates in ps1.

On the other hand, completeness states that, if there exists an
element x of the list xs that does not satisfy any of the predicates in
ps and does satisfy some predicate p, then the list ps ++ p :: []
is also reachable:

unreachedComplete : {X : Set}
→ (ps : List (X → Bool))
→ (xs : List X)
→ unreached ps xs ≡ []
→ (p : X → Bool)
→ (x : X)
→ x ∈ xs
→ p x ≡ true
→ ((p’ : X → Bool) → p’ ∈ ps → p’ x ≡ false)
→ unreached (ps ++ p :: []) xs ≡ []

Now, let us address the issue of unmatched elements. We im-
plement a function unmatched that returns the list of all those ele-
ments in a given list xs that do not satisfy any predicate in the given
list ps:

isMatched : {X : Set} → List (X → Bool) → X
→ Bool

isMatched ps x = any (λ p → p x) ps

unmatched : {X : Set} → List (X → Bool) → List X
→ List X

unmatched ps [] = []
unmatched ps (x :: xs) = if (isMatched ps x)

then unmatched ps xs
else x :: unmatched ps xs

The soundness theorem for the unmatched function states that,
if there are no unmatched elements in the list xs, then, for any
element x in xs, the list of predicates ps can be split into three
parts, ps ≡ ps1 ++ p :: ps2, so that no predicate from ps1 is
satisfied by x and p is satisfied by x:

unmatchedSound : {X : Set}
→ (ps : List (X → Bool))
→ (xs : List X)
→ unmatched ps xs ≡ []
→ (x : X) → x ∈ xs
→ Σ[ps1 ∈ List (X → Bool)]
Σ[ps2 ∈ List (X → Bool)]
Σ[p ∈ (X → Bool)]
ps1 ++ p :: ps2 ≡ ps ×
isMatched ps1 x ≡ false ×
p x ≡ true

Completeness says that, if each element in the list xs satisfies at
least one predicate in ps, then there are no unmatched elements:

unmatchedComplete : {X : Set}
→ (ps : List (X → Bool))
→ (xs : List X)
→ ((x : X) → x ∈ xs

→ Σ[p ∈ (X → Bool)]
p ∈ ps × p x ≡ true)

→ unmatched ps xs ≡ []

We can now define a combinator that takes a list of predicates
and functions from a listable set with proofs thats all predicates are
reached and all elements matched, and returns a function built from
the pieces:

predicateMatching : {X Y : Set}
→ (ps : List ((X → Bool) × (X → Y)))
→ (p : Listable X)
→ unmatched (map proj1 ps) (proj1 p) ≡ []
→ unreached (map proj1 ps) (proj1 p) ≡ []
→ X → Y

Let us look at some examples, but first, we want to have a
combinator fromPure for restricting the domain of a function to
a finite subset:

fromPure : {U Y : Set}{eq : DecEq U}{b : Bool}
→ {D : FinSubDesc U eq b}
→ (U → Y)
→ Elem D → Y

fromPure f (x , _) = f x

We define a finite subset of naturals MyNats containing five
natural numbers.

MyNats : FinSubDesc N _ ?
=_ false

MyNats = fsd-nodup (1 :: 42 :: 3 :: 8 :: 17 :: [])

Next we define a function even2odd3 that doubles the even and
triples the odd numbers of MyNats:

even2odd3 : Elem MyNats → N
even2odd3 = predicateMatching

(fromPure odd , (λ (x , p) → x * 3) ::
fromPure even , (λ (x , p) → x * 2) :: [])

(lstblElem MyNats) refl refl

The two last arguments (refl) are proofs of [] ≡ [] and indicate
that there are no unmatched elements and no unreachable predi-
cates. However, if we remove the first equation

even2odd3Bad1 = predicateMatching
(fromPure even , (λ (x , p) → x * 2) :: [])
(lstblElem MyNats) ??? refl

then there are unmatched elements and the type-checker wants us
to supply a proof of

(1 , tt) :: (3 , tt) :: (17 , tt) :: [] ≡ []

for the hole. The goal gives us a nice hint about which elements
exactly are unmatched.

If instead we replace the first equation with a predicate which is
satisfied by any element

even2odd3Bad2 = predicateMatching
((λ _ → true) , (λ (x , p) → x * 3) ::
fromPure even , (λ (x , p) → x * 2) :: [])

(lstblElem MyNats) refl ???

then the type-checker asks us to prove that
fromPure even :: [] ≡ [], which again hints which equations
are unreachable.

7. Prover
7.1 Motivation
The module Data.Fin.Dec of the standard library of Agda [3] is a
toolkit for building deciders of properties of elements of Fin n.
The library contains many combinators, but for illustration pur-
poses, it is enough to look at one them:

all? : {n : N} {P : Fin n → Set}
→ ((i : Fin n) → Dec (P i))
→ Dec ((i : Fin n) → P i)

The combinator all? takes some decidable predicate P on elements
of Fin n and returns a decision of whether P holds for all elements
of Fin n.

Suppose we want to use all? to establish the property from
Section 1, namely, commutativity of the operation _·_ Pauli. To
do so, we can use the previously established fact that there is a
bijection f2p from Fin 4 to Pauli and decide by using all?
whether f2p i1 · f2p i2 is equal to f2p i2 · f2p i1 for all
i1 and i2:

commDec : Dec ((i1 i2 : Fin 4)
→ f2p i1 · f2p i2 ≡ f2p i2 · f2p i1)

commDec = all? (λ i1 →
all? (λ i2 →

(f2p i1 · f2p i2) ≡P? (f2p i2 · f2p i1)))

Then, using the proof f2p-surj of p2f being a pre-inverse of f2p,
we can establish the property itself:

·-comm : (x1 x2 : Pauli) → x1 · x2 ≡ x2 · x1
·-comm x1 x2 with fromSq commDec (p2f x1) (p2f x2)
·-comm x1 x2

| p rewrite f2p-surj x1 | f2p-surj x2 = p

This approach appears to generate much less boilerplate com-
paring than the direct proof given in Section 1. However, there are
two shortcomings that we would like to eliminate:

1. The standard library combinators work with Fin n. Therefore,
before setting out to prove anything about some finite type, we
need to provide a bijection from an initial segment of natural
numbers. In Section 3.3, we showed that for listable subsets
this is not always possible.

2. The property is then first proved for Fin n (commDec) and then
mapped back to Pauli using the conversions f2p and p2f and
the proof f2p-surj.

7.2 Definition
We start by defining a combinator subAll? which is very similar
to all? shown above:

subAll? : {U : Set}{P : U → Set}
→ ListableSub U P
→ {Q : U → Set}
→ ((x : U) → {P x} → Dec (Q x))
→ Dec ((x : U) → {P x} → Q x)

The main difference is that the predicates P and Q now range over
some listable subset instead of Fin n. Recall that the elements of
ListableSub U P are the elements of U satisfying the P.

The same can be done for the existential quantifier:

subAny? : {U : Set}{P : U → Set}
→ ListableSub U P
→ {Q : U → Set}
→ ((x : U) → {P x} → Dec (Q x))
→ Dec (Σ[x ∈ U] P x × Q x)

If Q is a decidable predicate on some subset, then we can find out
whether at least one element of that subset satisfies Q.

The combinators subAll? and subAny? are sufficient to decide
properties which are in prenex form with the quantifiers ranging
over the whole finite subset given by P. However, for the conve-
nience of the user we have also added combinators for restricted
quantification. These combinators allow narrowing the range of
quantification by a further predicate decidable on the subset. We
will not discuss them here.

Now we can provide some syntactic sugar for our combinators:

syntax subAll? f (λ x → z) = Π x ∈ f , z

syntax subAny? f (λ x → z) = ∃ x ∈ f , z

(Agda will automatically rewrite expressions matching the right
hand side into the corresponding terms on the left.)

7.3 Example
Recall that the elements of ListableSub U P are the elements
of U that satisfy P. For the special case when U is a listable set
and P = λ _ → >, we have simplified versions of subAll? and
subAny, eliminating the overhead of dealing with trivial proofs of
P x when P = λ _ → >.

The proof of commutativity of the operation _·_ on Pauli
amounts essentially to just restating the property:

·-comm : (x1 x2 : Pauli) → x1 · x2 ≡ x2 · x1
·-comm = fromSq (
Π x1 ∈ listablePauli ,
Π x2 ∈ listablePauli , x1 · x2 ≡P? x2 · x1)

The proof that the group operation has a left unit is similar:

·-id : Σ[x ∈ Pauli] (y : Pauli) → x · y ≡ y
·-id = fromSq (
∃ x ∈ listablePauli ,
Π y ∈ listablePauli , x · y ≡P? y)

8. Related Work
Intuitionistic frameworks give rise to a rich variety of notions of
finiteness that collapse classically. In [8], [5] and [14], the author
describe various concepts of finiteness and their interrrelation. Ac-
cording to their classification, this paper focuses on the strongest
notion of finiteness, namely, finitely enumerable (listable) sets.

Since finite sets are essential for many formal theories, the users
of proof assistants are asking for ways to define new finite sets [1, 7]
and the developers are implementing libraries.

The Agda standard library [3] contains a toolkit for building
deciders of properties of Fin n. Before using it for proving the
property of a finite set X, the user needs to provide a bijection
from an initial segment of natural numbers. After establishing the
property for Fin n, it can be lifted to the original set X.

In [9], Gélineau improves the approach of the standard library
by implementing an elegant library in Agda for proving properties
quantified over finite sets. The user of a library is only asked to
prove finiteness of of the set of interest by specifying a bijection
from Fin n and then the property can be checked without trans-
porting it to and from Fin n manually.

In [15], Spiwack implements a Coq library for finite subsets of
countable sets. Countable sets are sets equipped with a surjection
from N. Countable sets have decidable equality: it is sufficient to
test for equality the natural numbers corresponding to the elements.
Finite sets then can be specified by providing a list of elements of
the countable base set without duplicates. The library has support
for proving decidable propositions and has a syntax for defining
sets by comprehension.

In Ssreflect [10], a finite type is a type together with an explicit
enumeration of its elements. Finite types can be constructed from
finite duplicate-free sequences. Finite types come with boolean
quantifiers forallb and existsb taking boolean predicates and
returning booleans. If X is a finite type, the type {set X} is the
type of sets over X , which is itself a finite type. Ssreflect provides
the usual set theoretic-operations including membership and set
comprehensions.

The authors of [4] show a systematic way for building combi-
nators for finite sets declaratively and provide lemmas that encap-
sulate commonly used reasoning steps. Their work is implemented
on top of Ssreflect.

9. Conclusions
In this work we addressed the problem of programming with finite
sets in the dependently typed setting of the Agda programming
language.

We showed that the direct approach of defining listable types as
datatypes with nullary constructors is verbose and introduces brittle
interdependencies between different definitions that are tedious to
maintain.

Afterwards, we introduced different variations of the notion of
a listable set. We proved that giving a complete list of elements of a
set is equivalent to providing a surjection from an initial segment of
natural numbers. Also, giving a complete list of elements without
duplicates is equivalent to providing a surjection. Moreover, all
four definitions are equivalent, the reason being that equality on
a listable set is decidable.

Next, we introduced a more general notion of a listable subset
(where a subset is specified by a base set and a predicate, but not
necessarily explicitly constructed as a set). We showed that, in gen-
eral, listability of a subset does not imply decidability of equality
on its elements. We also proved that the union, intersection, prod-
uct, and disjoint sum of listable subsets are listable subsets.

Then we proposed a pragmatic way of specifying a finite set
as a subset of an already constructed set with decidable equality.
A specification in this form defines a set that is listable and as a
consequence also has decidable equality.

We developed two approaches for defining functions from
listable subsets. In the first approach, we convert a well-formed
list of argument–value pairs into a function. This is convenient
to use for smaller domains. The second approach uses a list of
predicate–function pairs and proofs that the predicates cover the
whole domain and there are no unreachable predicates. The user
receives feedback from the type-checker about predicates that are
not reached and elements of the domain that are not matched.

Finally, we implemented combinators for proving propositions
quantified over listable subsets. The unusual aspect is that they can
be used even for subsets without decidable equality.

Acknowledgement The first author thanks Anna and Albert for
their support and patience.

This research was supported by the ERDF funded Estonian CoE
project EXCS, the Estonian Ministry of Education and Research
institutional research grant no. IUT33-13 and the Estonian Science
Foundation grant no. 9475.

References
[1] The Agda Community. Collections/containers/finite sets. The Agda

Mailing List, 2011. http://comments.gmane.org/gmane.comp.
lang.agda/3326

[2] The Agda Team. The Agda Wiki, 2015. http://wiki.portal.
chalmers.se/agda/

[3] The Agda Team. The Agda standard library version 0.9, 2014.
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=
Libraries.StandardLibrary.

[4] Y. Bertot, G. Gonthier, S. O. Biha, I. Pasca. Canonical big operators.
In O. A. Mohamed, C. A. Muñoz, S. Tahar, eds., Proc. of 21st Int.
Conf. on Theorem Proving in Higher Order Logics, TPHOLs 2008, v.
5170 of Lect. Notes in Comput. Sci., pp. 86–101. Springer, 2008.

[5] M. Bezem, K. Nakata, T. Uustalu. On streams that are finitely red.
Log. Methods in Comput. Sci., v. 8, n. 4, article 4, 2012.

[6] E. Bishop, D. Bridges. Constructive Analysis. V. 279 of Grundlehren
der mathematischen Wissenschaften. Springer, 1985.

[7] The Coq Community. Finite sets in proofs. The Coq Mailing
List, 2010. http://comments.gmane.org/gmane.science.
mathematics.logic.coq.club/4682.

http://comments.gmane.org/gmane.comp.lang.agda/3326
http://comments.gmane.org/gmane.comp.lang.agda/3326
http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Libraries.StandardLibrary
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Libraries.StandardLibrary
http://comments.gmane.org/gmane.science.mathematics.logic.coq.club/4682
http://comments.gmane.org/gmane.science.mathematics.logic.coq.club/4682

[8] T. Coquand, A. Spiwack. Constructively finite? In L. Laureano
Lambán, A. Romero, J. Rubio, eds., Contribuciones científicas en
honor de Mirian Andrés Gómez, pp. 217–230. Universidad de La
Rioja, 2010.

[9] S. Gélineau. Library for proving propositions quantified over finite
sets, 2011. https://github.com/agda/agda-finite-prover

[10] G. Gonthier, A. Mahboubi, E. Tassi. A small scale reflection extension
for the Coq system. Rapport de recherche RR-6455. INRIA, 2008.
http://hal.inria.fr/inria-00258384.

[11] K. Kuratowski. Sur la notion d’ensemble fini. Fund. Math., v. 1,
pp. 129–131, 1920.

[12] M. Nielsen, I. Chuang Quantum Computation and Quantum
Information. Cambridge Univ. Press, 2000.

[13] U. Norell. Dependently typed programming in Agda. In P. Koopman,
R. Plasmeijer, S. D. Swierstra, eds., Revised Lectures from 6th Int.
School on Advanced Functional Programming, AFP 2008, v. 5832 of
Lect. Notes in Comput. Sci., pp. 230-266. Springer, 2009.

[14] E. Parmann. Some varieties of constructive finiteness. In Abstracts of
19th Int. Conf. on Types for Proofs and Programs, pp. 67–69. 2014.

[15] A. Spiwack. A Coq library for extensional finite sets and comprehen-
sion, 2014. https://github.com/aspiwack/finset

[16] P. Wadler. Comprehending monads. Math. Struct. in Comput. Sci.,
v. 2, n. 4, pp. 461-493, 1992.

https://github.com/agda/agda-finite-prover
http://hal.inria.fr/inria-00258384
https://github.com/aspiwack/finset

	Introduction
	Extended Example

	Basic Definitions
	Finiteness Constructively
	Listable Sets
	Listable Subsets
	Decidability of Equality on Listable Subsets

	Pragmatic Finite Sets
	Motivation and Definition
	Finite Subsets are Listable
	Finite Subsets from Lists
	Finite Subset Monad

	Combinators
	Function Definition
	Tabulation
	Predicate Matching

	Prover
	Motivation
	Definition
	Example

	Related Work
	Conclusions

