Generic Derivation of Induction for Impredicative Encodings in Cedille

Denis Firsov and Aaron Stump

Department of Computer Science The University of Iowa

January 9, 2018

Outline

- Motivation
- Type theory
- Induction for natural numbers
- Induction generically

Motivation I

It is possible to encode inductive datatypes in pure type theory.

Nat =
$$\forall$$
 X : \star . (X \rightarrow X) \rightarrow X \rightarrow X.

- It is impossible to derive induction principle in the second-order dependent type theory (Geuvers, 2001).
- As a consequence, most languages come with built-in infrastructure for defining inductive datatypes (Agda, Coq, Idris, etc.).

data Nat : Set where

zero : Nat

 suc : $\mathsf{Nat} \to \mathsf{Nat}$

 Is it possible to extend CC with some <u>typing constructs</u> so that the induction becomes provable?

Motivation II

The Calculus of Dependent Lambda Eliminations (CDLE).

- CDLE is a pure type theory proposed by Aaron Stump (JFP, 2017).
- It adds three typing constructs to the Curry-style Calculus of Constructions:
 - dependent intersection types,
 - implicit products,
 - a primitive heterogeneous equality.
- Cedille is an implementation of CDLE type theory (in Agda!).

Extension: Dependent intersection types

Formation

$$\frac{\Gamma \vdash T : \star \quad \Gamma, x : T \vdash T' : \star}{\Gamma \vdash \iota x : T . \ T' : \star}$$

Introduction

$$\frac{\Gamma \vdash t_1 : T \quad \Gamma \vdash t_2 : [t_1/x]T' \quad \Gamma \vdash \rho : t_1 \simeq t_2}{\Gamma \vdash [t_1, t_2\{\rho\}] : \iota \times : T \cdot T'}$$

Elimination

$$\frac{\Gamma \vdash t : \iota x \colon T \colon T'}{\Gamma \vdash t \colon 1 \colon T} \text{ first view } \qquad \frac{\Gamma \vdash t : \iota x \colon T \colon T'}{\Gamma \vdash t \colon 2 \colon [t \colon 1/x]T'} \text{ second view}$$

Erasure

$$|[t_1, t_2\{p\}]| = |t_1|$$

 $|t.1| = |t|$
 $|t.2| = |t|$

Extension: Implicit products

Formation

$$\frac{\Gamma, x: T' \vdash T: \star}{\Gamma \vdash \forall x: T'. T: \star}$$

Introduction

$$\frac{\Gamma, x: T' \vdash t: T \quad x \not\in FV(|t|)}{\Gamma \vdash \Lambda x: T'. t: \forall x: T'. T}$$

Elimination

$$\frac{\Gamma \vdash t : \forall x : T'. T \quad \Gamma \vdash t' : T'}{\Gamma \vdash t \quad -t' : [t'/x]T}$$

Erasure

$$|\Lambda x: T. t| = |t|$$

 $|t - t'| = |t|$

Extension: Equality

Formation rule

$$\frac{\Gamma \vdash t : T \quad \Gamma \vdash t' : T'}{\Gamma \vdash t \simeq t' : \star}$$

Introduction

$$\frac{\Gamma \vdash t : T}{\Gamma \vdash \beta : t \simeq t}$$

Elimination

$$\frac{\Gamma \vdash t' : t_1 \simeq t_2 \ \Gamma \vdash t : [t_1/x]T}{\Gamma \vdash \rho \ t' \ - \ t : [t_2/x]T}$$

Erasure

$$\begin{array}{rcl} |\beta| & = & \lambda x. x \\ |\rho \ t \ - \ t'| & = & |t'| \end{array}$$

Definition of natural numbers

• Define Church-style natural numbers

cNat
$$\blacktriangleleft$$
 * = \forall X : *. (X \rightarrow X) \rightarrow X \rightarrow X.

$$cZ \triangleleft cNat = \Lambda X. \lambda s. \lambda z. z.$$

cS
$$\blacktriangleleft$$
 cNat \rightarrow cNat = λ n. Λ X. λ s. λ z. s (n X s z).

Define inductivity predicate for cNat:

cNatInductive
$$\blacktriangleleft$$
 cNat \rightarrow \star = λ x : cNat.

$$\forall$$
 Q : cNat \rightarrow \star .

$$(\forall x : cNat. Q x \rightarrow Q (cS x)) \rightarrow Q cZ \rightarrow Q x.$$

 Define the "true" type of natural numbers as dependent intersection of cNat and predicate cNatInductive.

```
Nat \blacktriangleleft * = \iota x : cNat. cNatInductive x.
```

• Define constructors for Nat

$$Z \blacktriangleleft Nat = [cZ, \Lambda X. \lambda s. \lambda z. z \{ \beta \}].$$

S
$$\triangleleft$$
 Nat \rightarrow Nat = λ n. [cS n.1,

$$\Lambda$$
 P. λ s. λ z. s -n.1 (n.2 P s z) { β }].

Induction for natural numbers

- If n : Nat then n.1 is cNat and n.2 : cNatInductive n.1. Moreover, n \simeq n.1.
- The goal is to prove that every "true" natural Nat is inductive: NatInductive \blacktriangleleft Nat $\rightarrow \star = \lambda x$: Nat. \forall Q : Nat $\rightarrow \star$. $(\forall x : \text{Nat. Q } x \rightarrow \text{Q (S x)}) \rightarrow \text{Q Z} \rightarrow \text{Q x.}$
- Define the following predicate combinator
 Lift ◀ (Nat → *) → cNat → * = λ Q : Nat → *.
 λ x : cNat. Σ x' : Nat. (x ≃ x'.1 × Q x')
- Since $x \simeq x.1$ then for any predicate Q on Nat equiv $\blacktriangleleft \Pi$ n : Nat. Q n \Leftrightarrow Lift Q n.1
- Let n be natural, Q predicate on Nat, s and z be step and base cases.
- ② Use equiv to get step s' and base b' cases for Lift Q from s and z.
- Since, n.1 is inductive then we use n.2 (Lift Q) s' z' to derive Lift Q n.1.
- Finally, get Q n from Lift Q n.1.

Mendler-style inductive datatypes I

- Categorically, inductive datatypes are modelled as initial F-algebras.
- Mendler-style F-algebra is a pair of object (carrier) X and a natural transformation $\mathcal{C}(-,X) \to \mathcal{C}(F-,X)$.
- In Cedille, object is a type and a natural transformation is a polymorphic function:

```
AlgM \blacktriangleleft \star \rightarrow \star = \lambda X : \star.

\forall R : \star. (R \rightarrow X) \rightarrow F R \rightarrow X.
```

- The object of initial Mendler-style F-algebra is a least fixed point of F:
 FixM ◀ * = ∀ X : *. AlgM X → X.
- There is a homomorphism from the carrier of initial algebra to the carrier of any other algebra:

foldM
$$\triangleleft$$
 \forall X : \star . AlgM X \rightarrow FixM \rightarrow X = <..>

• Define the arrow of initial Mendler-style F-algebra:

inM
$$\triangleleft$$
 AlgM FixM = λ c. λ v. λ alg. alg (foldM alg) (fmap c v).

Mendler-style inductive datatypes II

- Goal is to define an inductive subset of FixM as an intersection type.
- The value x : FixM and the proof that x is inductive must be equal: $FixM \blacktriangleleft x = \forall X : x . AlgM X \rightarrow X.$

IsIndFixM \triangleleft FixM $\rightarrow \star = \lambda x : FixM.$

 \forall Q : FixM \rightarrow *. PrfAlgM FixM Q inM \rightarrow Q x.

Proof algebra

AlgM
$$\blacktriangleleft$$
 \star \rightarrow \star = λ X : \star .
 \forall R : \star . (R \rightarrow X) \rightarrow F R \rightarrow X.

PrfAlgM
$$\blacktriangleleft$$
 Π X : \star . (X \rightarrow \star) \rightarrow AlgM X \rightarrow \star
= λ X : \star . λ Q : X \rightarrow \star . λ alg : AlgM X.
 \forall R : \star .
 \forall cast : R \rightarrow X. \forall _ : \forall r : R. cast r \simeq r.
(Π r : R. Q (cast r)) \rightarrow
 Π fr : F R. Q (alg cast fr).

Mendler-style inductive datatypes III

- Inductive subset of FixM is then
 FixIndM ◀ ★ = ι x : FixM. IsIndFixM x.
- We implement the initial Mendler-style F-algebra inFixIndM ■ AlgM FixIndM = <..>
- Induction principle

```
\begin{array}{ll} \text{inductionM} \; \blacktriangleleft \; \forall \; Q \; : \; \text{FixIndM} \; \to \; \star. \\ \text{PrfAlgM FixIndM} \; Q \; \text{inFixIndM} \; \to \\ \Pi \; x \; : \; \text{FixIndM.} \; Q \; x \; = <...> \end{array}
```

Properties I

Naturality of Mendler-style algebras

```
Natural \blacktriangleleft \Pi X : \star. AlgM X \rightarrow \star = \lambda X : \star. \lambda algM : AlgM X. \forall R : \star. \forall f : R \rightarrow X. \forall fr : F R. algM f fr \simeq algM (\lambda x. x) (fmap f fr).
```

- Assuming naturality of Mendler-style F-algebras we prove
 - Universality
 - Reflection
 - Cancellation
 - Fusion

Lambek's lemma

 To start with we convert the initial Mendler-style F-algebra to the Church-style F-algebra:

```
inFixIndM' \triangleleft F FixIndM \rightarrow FixIndM = inFixIndM (\lambda x. x).
```

 The categorical model of inductive types gives the exact recipe on how to implement the inverse of inFixIndM', namely:

```
outFixIndM \triangleleft FixIndM \rightarrow F FixIndM = fold (fmap inFixIndM).
```

• We show that it is a pre-inverse and post-inverse:

outFixIndM (inFixIndM' x) \simeq x = <..>

Discussion

• Church-style encoding is based on conventional F-algebras:

AlgC
$$\blacktriangleleft$$
 \star \rightarrow \star = λ X : \star . F X \rightarrow X.

- Church-style encoding satisfies the same set of properties without naturality assumptions.
- Derived rule of induction allows to prove the isomorphism of Church and Mendler-style encodings.
- Surprising observation is that derivation of induction for Mendler-style encodings uses only the first functor law.
- The consequence is that we can take fixed points and prove induction for positive schemes which are not functors:

$$F \blacktriangleleft \star \rightarrow \star = \lambda X : \star . \Sigma x1 : X. \Sigma x2 : X. x1 \neq x2.$$

mapId \triangleleft \forall X Y : \star . Id X Y \rightarrow F X \rightarrow F Y

Ongoing and Future work

- Proof reuse (by Larry Diehl).
- Bestiary of lambda-encodings (by Richard Blair).
- Type inference algorithm for Cedille (by Chris Jenkins).
- Constant time predecessor for linear space lambda-encodings.
- Generic course-of-value datatypes.
- (Small) Induction-recursion.

Thank you for your attention!