Generic Derivation of Induction for Impredicative
Encodings in Cedille

Denis Firsov and Aaron Stump

Department of Computer Science
The University of lowa

January 9, 2018

Outline

© Motivation

@ Type theory

© Induction for natural numbers

@ Induction generically

Motivation |

o ltis to encode inductive datatypes in pure type theory.
Nat = VX :%x. X=X =X — X.
o It is impossible to derive induction principle in the second-order
dependent type theory (Geuvers, 2001).
@ As a consequence, most languages come with built-in infrastructure
for defining inductive datatypes (Agda, Coq, Idris, etc.).
data Nat : Set where
zero : Nat
suc : Nat — Nat
@ Is it possible to extend CC with some typing constructs so that the
induction becomes provable?

Motivation |l

The Calculus of Dependent Lambda Eliminations (CDLE).

e CDLE is a pure type theory proposed by Aaron Stump (JFP, 2017).

@ It adds three typing constructs to the Curry-style Calculus of
Constructions:
@ dependent intersection types,
© implicit products,
© a primitive heterogeneous equality.

o Cedille is an implementation of CDLE type theory (in Agda!).

Extension: Dependent intersection types

@ Formation
Fr=T7T:% x:THT :%

Mux:T. T %

@ Introduction
TrEt: T Tht:[t/X]T Thp:ti~t
e[t t{p}] ex:T. T

@ Elimination

TEtoux:T. T first vi TEtoux:T. T cecond view
rEel: 7 UV T2 [t 1/X] T

@ Erasure

I[t1, t2{p}]l
|t.1]
|t.2]

[t1]
It]
It]

Extension: Implicit products

Formation

Mx:T'+T:%
FrEvx:T.T:%

Introduction

Tx:T'Ht: T x¢&FV(t])

Fr-Ax: T t:Vx:T'.T

Elimination

Fr-t:vVx:T'.T THt: T

Fret —t':[t'/x]T

Erasure

Ax:T.t| = |t
t —t'| = |t

6

Extension: Equality

@ Formation rule
Fret: T THE: T
Tt~ t:x

@ Introduction
Fr=t: T

rM=pg:t~t

@ Elimination
Fretity~to THEE: [t1/X]T

FEpt — t:[t/x]T

@ Erasure
18] = Ax.x
bt — ¢ = ||

Definition of natural numbers

@ Define Church-style natural numbers
cNat « x =V X :%. X—>X) > X — X.
cZ 4 cNat = A X. A s. A z. z.
cS €4 cNat — cNat = A n. A X. As. A z. s (nX s z).
@ Define inductivity predicate for cNat:
cNatInductive <€ cNat — * = A x : cNat.
VYV Q : cNat — «*.
(Vx :cNat. Qx - Q (¢S x)) - QcZ — Qx.
@ Define the “true” type of natural numbers as dependent intersection
of cNat and predicate cNatInductive.
Nat €4 x = ¢ X : cNat. cNatInductive x.
@ Define constructors for Nat
Z «Nat =[cZ, AX. hs. hz. z {0} 1.
S « Nat - Nat = A n. [cS n.1,
AP. As. hz.s-nl m.2Psz){p}1].

©

Induction for natural numbers

© 000

Ifn : Nat thenn.1lis cNat andn.2 : cNatInductive n.1.
Moreover, n ~ n.1.

The goal is to prove that every “true” natural Nat is inductive:
NatInductive « Nat — % = A x : Nat. V Q : Nat — «.
(Wx:Nat. Qx - Q (S x)) -QZ — Q x.

Define the following predicate combinator

Lift €« (Nat — %) — cNat — % = A Q : Nat — =*.
Ax : cNat. X x” : Nat. x ~ x’.1 x Q x’)

Since x ~ x.1 then for any predicate Q on Nat

equiv 4« [n : Nat. Q n & Lift Q n.1

Let n be natural, Q predicate on Nat, s and z be step and base cases.
Use equiv to get step s’ and base b’ cases for Lift Q from s and z.
Since, n.1 is inductive then we use n.2 (Lift Q) s’ z’ to derive
Lift Q n.1.

Finally, get Q n from Lift Q n.1.

Mendler-style inductive datatypes |

Categorically, inductive datatypes are modelled as initial F-algebras.

@ Mendler-style F-algebra is a pair of object (carrier) X and a natural

transformation C(—, X) — C(F —, X).
In Cedille, object is a type and a natural transformation is a
polymorphic function:
AlgM €« *x — % = A X : *.
VR:*%. R—-X) - FR — X.
The object of initial Mendler-style F-algebra is a least fixed point of F:
FixM €« x =V X : x. AlgM X — X.
There is a homomorphism from the carrier of initial algebra to the
carrier of any other algebra:
foldM « V X : %. AlgM X — FixM — X = <..>
Define the arrow of initial Mendler-style F-algebra:
inM <« AlgM FixM = A c. A v. A alg.
alg (foldM alg) (fmap c v).

10

Mendler-style inductive datatypes Il

@ Goal is to define an inductive subset of FixM as an intersection type.
@ The value x : FixM and the proof that x is inductive must be equal:
FixM €« x =V X : . AlgM X — X.

IsIndFixM « FixM — x = A x : FixM.
vV Q : FixM — %. PrfAlgM FixM Q inM — Q X.

@ Proof algebra
AlgM €« * — % = A X : *.
VR:*. R—>X) > FR— X.

PrfAlgM « MM X : x. X — %) — AlgM X — «
=AX:*%x.AQ:X — x. A alg : AlgM X.
V R : *.
Vcast : R > X. V_:Vr:R. castr ~ r.
(Mr :R. Q (cast 1)) —
Mfr : FR. Q (alg cast fr).

11

Mendler-style inductive datatypes Il

@ Inductive subset of FixM is then
FixIndM « * = ¢ x : FixM. IsIndFixM x.
@ We implement the initial Mendler-style F-algebra
inFixIndM « AlgM FixIndM = <..>
@ Induction principle

inductionM « V Q : FixIndM — x.
PrfAlgM FixIndM Q inFixIndM —
M x : FixIndM. Q x = <..>

12

Properties |

@ Naturality of Mendler-style algebras

Natural « 1 X : x. AlgM X — % =
ANX : x. A algM : AlgM X.
VR:*x.Vf:R—X.Vfr:FR.
algM f fr ~ algM O\ x. x) (fmap f fr).
@ Assuming naturality of Mendler-style F-algebras we prove
Universality
o Reflection
e Cancellation
e Fusion

13

Lambek's lemma

@ To start with we convert the initial Mendler-style F-algebra to the
Church-style F-algebra:

inFixIndM' <« F FixIndM — FixIndM
= inFixIndM (A x. x).

@ The categorical model of inductive types gives the exact recipe on
how to implement the inverse of inFixIndM’, namely:
outFixIndM « FixIndM — F FixIndM

= fold (fmap inFixIndM).
@ We show that it is a pre-inverse and post-inverse:

inoutM « [l x : FixIndM.
inFixIndM’ (outFixIndM x) ~ x = <..>

outinM « 1 x : F FixIndM.
outFixIndM (inFixIndM’ x) ~ x

I
A
\Y

14

Discussion

@ Church-style encoding is based on conventional F-algebras:
AlgC €« x > x = A X : x. F X — X.

@ Church-style encoding satisfies the same set of properties without
naturality assumptions.

@ Derived rule of induction allows to prove the isomorphism of Church
and Mendler-style encodings.

@ Surprising observation is that derivation of induction for Mendler-style
encodings uses only the first functor law.

@ The consequence is that we can take fixed points and prove induction
for positive schemes which are not functors:

Fa4dx—>x=AX:* Xzxl:X X x2:X.xl#x2.

mapld « VXY : x. IdXY > FX —>FY

15

Ongoing and Future work

Proof reuse (by Larry Diehl).

Bestiary of lambda-encodings (by Richard Blair).

Type inference algorithm for Cedille (by Chris Jenkins).
Constant time predecessor for linear space lambda-encodings.

Generic course-of-value datatypes.

(Small) Induction-recursion.

16/1

Thank you for your attention!

