
Purely Functional Incremental Computing

Denis Firsov and Wolfgang Jeltsch

Institute of Cybernetics at Tallinn University of Technology
Akadeemia tee 21, 12618 Tallinn, Estonia

{denis, wolfgang}@cs.ioc.ee

Abstract Many applications have to maintain evolving data sources as
well as views on these sources. If sources change, the corresponding views
have to be adapted. Complete recomputation of views is typically too
expensive. An alternative is to convert source changes into view changes
and apply these to the views. This is the key idea of incremental comput-
ing. In this paper, we use Haskell to develop an incremental computing
framework. We illustrate the concepts behind this framework by imple-
menting several example computations on sequences. Our framework
allows the user to implement incremental computations using arbitrary
monad families that encapsulate mutable state. This makes it possible to
use highly efficient algorithms for core computations.

1 Introduction

Incremental computing is an approach to efficiently updating a view of some
data source whenever the data source changes. For an explanation, let us look at
the following diagram:

Source
[2, 3, 5, 7, 11]

Source′

[2, 3,23,42, 5, 7, 11]

View
[3, 5, 7, 11]

View′

[3,23, 5, 7, 11]

insert [23, 42] at 2

filter oddfilter odd

insert [23] at 1

Initially, the source is the list [2, 3, 5, 7, 11]. We create a view of the source, defined
as the list of odd numbers in the source, which is [3, 5, 7, 11] initially. Next, we
change the source by inserting the numbers 23 and 42 at index 2, resulting in
[2, 3, 23, 42, 5, 7, 11]. We expect the view to adapt to the new source, that is, to
become [3, 23, 5, 7, 11]. This can be done by fully recomputing the view from the
source. However, a more efficient method is to turn the source change “insert
[23, 42] at 2” into a view change “insert [23] at 1” and apply the latter to the
view.

The most important trait of different approaches to incremental computing
is the amount of automation they provide. One of the strongest achievements

in the field of incremental computing is the approach of self-adjusting computa-
tion developed by Acar [1]. Here, any function is incrementalized automatically
using dependency tracking. However, the downside of full automation is that it
provides less control over time and space complexity. For example, the trivial
accumulator-based implementation of the reverse function requires linear time
for change propagation when incrementalized automatically. One can achieve
change propagation in logarithmic time by implementing reverse using a divide-
and-conquer strategy. However, it is generally hard to come up with a function
definition that results in efficient change propagation.

In this paper, we present a framework for incremental computing. This
framework makes it possible to efficiently implement core computations using
carefully crafted algorithms, and then build more complex computations from
them by means of easy-to-use combinators. Furthermore, our framework offers
composability at the type level, allowing notions of change for complex types to
be derived from notions of change for simpler types. To illustrate our framework,
we use sequences as our running example. We make the following contributions:

– In Sect. 2, we describe an interface to changeable values and associated
changes.

– In Sect. 3, we introduce the notion of transformation. A transformation maps
a source to a view. It allows for efficient updates of the view by propagating
changes of the source to the view. (An example of a transformation is the
filter odd in the above diagram.)

– In Sect. 4, we develop transformations that may use pure state to propagate
changes. As a result, we can equip a wider range of operations with change
propagation.

– In Sect. 5, we show that for some transformations efficient change propagation
requires mutable state. We characterize a class of monad families that can
embed different kinds of mutable state into pure computations. We generalize
transformations such that they can use arbitrary monad families from this
class.

The remaining sections are devoted to related work, conclusions, and further
work.

Our developments use the Haskell programming language and are compatible
with the Glasgow Haskell Compiler (GHC), version 7.8.31. They are available as
the Cabal package incremental-computing [6].

2 Changes and Changeables

The central notion of our framework is the change. A change describes a modifi-
cation of values. Changes are typically implemented using algebraic data types.
This way, they can be inspected during change propagation. We define a type
class Change of all types of changes:
1 Unfortunately, our code does not work with GHC 7.10 because of a bug in this
version of the compiler. However, this bug will be fixed in the upcoming GHC 7.12.

class Change p where
type Value p :: ∗
($$) :: p→ Value p→ Value p

Each type p of changes has an associated type Value p of values on which the
changes can act. The $$-operator denotes change application. We can see a partial
application (change $$) :: Value p→ Value p as the meaning of change.

A change type may optionally be an instance of the Monoid class, in which
case ε denotes the identity change, and change2 • change1 denotes the change
that consists of change1 followed by change2.

For any type of values, there is a primitive notion of change, where a change
is either keeping the current value or replacing the current value by a new value:

data PrimitiveChange a = Keep | ReplaceBy a
instance Monoid (PrimitiveChange a) where
ε = Keep
Keep • change = change
ReplaceBy val •_ = ReplaceBy val

instance Change (PrimitiveChange a) where
type Value (PrimitiveChange a) = a

Keep $$ val = val
ReplaceBy val $$ _ = val

Each value type can have an arbitrary number of change types. However, we
allow to specify a single notion of change as the default for a value type. We
introduce a class Changeable of all value types with a default change type:

class (Monoid (DefaultChange a),Change (DefaultChange a),
Value (DefaultChange a) ∼ a)⇒ Changeable a where

type DefaultChange a :: ∗
type DefaultChange a = PrimitiveChange a

As the code specifies, default changes have to form a monoid. If an instance
declaration does not provide a declaration for DefaultChange, primitive changes
are used as the default notion of change. Primitive changes are appropriate
for primitive types, like Bool and Integer ; so we can instantiate Changeable for
primitive types easily:

instance Changeable Bool
instance Changeable Integer

In this paper, we want to illustrate the concepts of our framework taking
lists as a running example. However, some operations on standard Haskell lists
are inefficient. As a solution, the module Data.Sequence from the containers
package provides a type Seq with operations that mostly run in O(logn) time. In
particular, splitting a sequence at a given index and concatenating two sequences

takes Θ(logn) time. So we base our illustration on the Seq type. However, we
will still use list syntax in examples to avoid notational clutter.

First, we define a type AtomicChange whose elements are changes of sequences:

data AtomicChange a = Insert Int (Seq a)
| Delete Int Int
| Shift Int Int Int
| ChangeAt Int (DefaultChange a)

The semantics of changes and the time complexity of change application to
sequences of size n are as follows:

– Insert ix seq inserts seq at index ix. It takes O(logn+ |seq|) time.
– Delete ix len deletes the part of length len that starts at index ix. It takes
O(logn) time.

– Shift src len tgt shifts the part of length len that starts at index src to
index tgt. It takes O(logn) time.
Applying Shift src len tgt is actually equivalent to first applying Delete src len
and then Insert tgt seq where seq is the deleted part. We provide Shift
nevertheless, because in certain situations, change propagation for Shift can
be done more efficiently than change propagation for the corresponding
Delete–Insert chain.

– ChangeAt ix elemChange applies elemChange to the element at index ix. It
takes O(logn+m) time where m is the time cost for applying elemChange
to the element.

Note that not all changes are applicable to a given sequence. For example, a
change Insert ix seq can only be applied to a sequence of length len if 0 6 ix 6 len.
In the incremental-computing package, we properly deal with this issue, but in
this paper, we ignore it for the sake of simplicity.

We want to use lists of atomic changes as the default changes of sequences. This
way, default sequence changes form a monoid. We introduce a type MultiChange
such that MultiChange a is essentially [a], but differs from it in the following
points:

– Concatenation takes only O(1) time, which is achieved by using difference
lists.

– The monoid operator • is concatenation with arguments swapped to accom-
modate the above-mentioned argument order of change composition.

– For every instance p of Change, MultiChange p is an instance of Change as
well (with an obvious implementation).

We instantiate Changeable for sequence types as follows:

instance Changeable a⇒ Changeable (Seq a) where
type DefaultChange (Seq a) = MultiChange (AtomicChange a)

For convenience, we define variants of Insert, Delete, Shift, and ChangeAt, called
insert, delete, shift, and changeAt, that construct singleton multi changes instead
of atomic changes.

3 Transformations without State

Transformations are functions equipped with means for change propagation. For
very simple cases, a transformation can be seen as a pair of two functions: one
that maps source values to view values and one that maps source changes to
view changes:

data Trans p q = Trans (Value p→ Value q) (p→ q)

For transformations that work with default changes, we provide a convenience
type alias:

type a� b = Trans (DefaultChange a) (DefaultChange b)

As an example, we present a map combinator for sequences that works
with transformations instead of functions. First, we implement a version of this
combinator that only propagates atomic changes:

atomicMap :: (Changeable a,Changeable b)
⇒ (a� b)→ Trans (AtomicChange a) (AtomicChange b)

atomicMap (Trans elemFun elemProp) = Trans fun prop where
fun = fmap elemFun
prop (Insert ix seq) = Insert ix (fmap elemFun seq)
prop (Delete ix len) = Delete ix len
prop (Shift src len tgt) = Shift src len tgt
prop (ChangeAt ix elemChange) = ChangeAt ix (elemProp elemChange)

Since the default changes of sequences are multi changes, we now develop
a combinator map for sequences that works with multi changes. Recall that
multi changes are essentially just lists of changes. We introduce a function
MultiChange.map of type

Trans p q → Trans (MultiChange p) (MultiChange q)

that keeps the function on values and lifts the function on changes to a function
on multi changes. The definition of map becomes simple now:

map :: (Changeable a,Changeable b)⇒ (a� b)→ (Seq a� Seq b)
map trans = MultiChange.map (atomicMap trans)

4 Transformations with Pure State

In many cases, we need additional information about the current source in order
to propagate changes. An example is the reverse transformation. A source change
Insert ix seq, for example, must be turned into the view change Insert (len −
ix) (reverse seq) where len is the current length of the source. So the change
propagator needs to know this length.

To remedy this problem, we extend the Trans type such that a transformation
can use a state to track information about the source:

data Trans p q = ∀s . Trans (Value p→ (Value q, s)) (p→ s→ (q, s))

The type s is the type of the state. Every value of a type Trans p q can use its
own type s, which does not show up as a parameter of Trans. In a transformation
Trans init prop, the function init turns an initial source to the corresponding
view and the initial state, and the function prop turns a source change and a
current state into the corresponding view change and the updated state. Note
that prop is a computation in the state monad.

We can still represent transformations without state by setting the type s
to (). However, we cannot use the previous implementation of map anymore,
since the argument of type a� b that map receives has the new, more complex,
structure. Nevertheless, it is possible to implement map for transformations
with pure state. The only difficulty is the propagation of ChangeAt changes. To
propagate a change of the form ChangeAt ix elemChange, we have to propagate
elemChange. This requires access to the state of the element at index ix. For
this reason, we store the sequence of all element states as the state of the result
transformation of map.

Another example of a transformation that requires state is concat, which
flattens a sequence of sequences. To propagate changes, concat needs to translate
indexes and lengths that refer to the nested source sequence into indexes and
lengths that refer to the flattened view sequence. For this, it needs to know the
lengths of the elements of the source. The concat transformation stores these as
its state.

Having concat, we can implement a filter combinator with only little effort.
First, we implement a helper combinator

gate :: Changeable a⇒ (a� Bool)→ (a� Seq a) ,

which is also useful in other contexts. The view of a transformation gate prd is
the empty sequence whenever prd yields false for the source; otherwise, it is the
singleton sequence containing just the source. Figure 1 shows an example run for
gate odd. Note that the source is of type Integer and thus uses changes of type
PrimitiveChange Integer , while the view is of type Seq Integer and thus uses
changes of type MultiChange (AtomicChange Integer). We can now implement
filter easily by composing map, concat, and gate appropriately:

filter :: Changeable a⇒ (a� Bool)→ (Seq a� Seq a)
filter prd = concat ◦map (gate prd)

The given implementation uses a composition operator ◦ of type Trans q r →
Trans p q → Trans p r, which definition is straightforward. The example from
the introduction illustrates the use of filter .

5 Transformations with Mutable State

The goal of incremental computing is to make views adapt quickly to source
changes. In some cases, transformations with only pure state are not capable of

Source
2

Source′

3
Source′′

5

View
[]

View′

[3]
View′′

[5]

ReplaceBy 3 ReplaceBy 5

insert 0 [3] changeAt 0 (ReplaceBy 5)

gate odd gate odd gate odd

Figure 1. Example run for gate odd

propagating changes with optimal time complexity. In Subsect. 5.1, we sketch
an efficient solution to incremental stable sorting that relies on mutable state.
Next, in Subsect. 5.2, we develop the notion of monadic transformation, which
makes it possible to use mutable state in incremental computations. Finally, in
Subsect. 5.3, we discuss how transformation combinators can be implemented
safely in the presence of mutable state.

5.1 Incremental Stable Sorting
A sorting algorithm is stable if it retains the relative order of elements that
are considered equivalent by the comparison function. Stability is especially
important in an incremental setting, as it prevents equivalent elements from
changing their relative order during application of unrelated changes.

There are several solutions to incremental sorting. Acar [1] presents a random-
ized merge sort that he incrementalizes using self-adjusting computation. With
this approach, change propagation takes logarithmic expected time for single-
element insertions and deletions, and sorting is stable. Furthermore, Acar et al. [2]
describe a cleverly crafted heapsort implementation, for which self-adjusting com-
putation provides single-element change propagation in logarithmic worst-case
time. Unfortunately, the use of heapsort makes sorting unstable. We overcome
the tradeoff between these two approaches by implementing incremental stable
sorting with logarithmic worst-case time for single-element change propagation.
In this subsection, we describe the main ideas behind our implementation.

Let us first discuss incremental unstable sorting. As an example, we want
to look at sequences of letters. We assume that letters are ordered according to
their position in the alphabet without taking case into account. The following
diagram shows an example of change propagation:

Source
"cACB"

Source′

"cACaB"

View
"ABcC"

View′

"AaBcC"

insert 3 "a"

sortsort

insert 1 "a"

The generated view change insert 1 "a" is also appropriate for stable sorting.
Unstable sorting, however, additionally permits the view change insert 0 "a",
which leads to the updated view "aABcC".

The crucial part of change propagation for unstable sorting is the translation
of source indexes into view indexes. To facilitate this translation, we maintain
the sorted sequence as the state of the sorting transformation. We use a search
tree data structure for it, so that we can find the view index of a newly inserted
element or an element to be deleted in logarithmic worst-case time.

Now let us try to turn this incremental unstable approach into an approach
to incremental stable sorting. It is well known how to perform non-incremental
stable sorting based on an unstable sorting algorithm. First, the elements of
the unsorted sequence are tagged with their indexes. Afterwards, the resulting
sequence of element–index pairs is sorted lexicographically. Finally, the indexes
are dropped from the sorted sequence.

We cannot adapt this approach directly to incremental sorting. When propa-
gating an insertion, we must come up with tags for the new elements that lie
between the tags of the existing elements. For an explanation, let us look at the
above diagram again. We first tag the initial source "cACB" with indexes and
get the sequence [(’c’, 0), (’A’, 1), (’C’, 2), (’B’, 3)]. Then, we sort this sequence
lexicographically, obtaining [(’A’, 1), (’B’, 3), (’c’, 0), (’C’, 2)]. For propagating
the change insert 3 "a", we have to create a tag that lies between the tags of
’C’ and ’B’. We could use rational numbers as tags, so that the new tag could
be 2.5. However with this approach, tag comparison would be linear in the worst
case. Retagging the source sequence is also not an option, as it would take linear
time in the worst case as well.

We solve the tagging issue by employing a solution to the order maintenance
problem. In the order maintenance problem, the objective is to maintain a total
order of tags subject to insertions, deletions, and tag comparison. Dietz and
Sleator [5] show how to achieve constant worst-case time for all these operations.
By using their solution, we are able to create tags between existing tags efficiently
and still avoid linear time complexity for tag comparison. We keep the tagged
sorted sequence in the form of a search tree. In addition, we maintain the tagged
unsorted sequence, so that we can generate new tags based on the tags of
neighboring elements.

Let us illustrate this with our running example. The initial source "cACB" leads
to a tagged unsorted sequence [(’c’, t0), (’A’, t1), (’C’, t2), (’B’, t3)] with t0 <
t1<t2<t3 and the tagged sorted sequence [(’A’, t1), (’B’, t3), (’c’, t0), (’C’, t2)],
which together constitute the initial state. For propagating the change insert 3 "a",
we first use the tagged unsorted sequence to find the neighboring tags of the
new element. We use order maintenance insertion to create a new tag t′ between
those tags, so that t2 < t′ < t3. We insert the pair (’a’, t′) into the tagged sorted
sequence, leading to [(’A’, t1), (’a’, t′), (’B’, t3), (’c’, t0), (’C’, t2)]. The index
of this pair in the updated tagged sorted sequence is the view insertion index.

The crux is that the order maintenance solution by Dietz and Sleator relies
on mutable state. So transformations with pure state are not powerful enough to

implement the above incremental stable sorting strategy. Therefore, we extend
our notion of transformation once more to allow for state to be mutable.

5.2 Monadic Transformations

Haskell provides the ST type to implement computations that can work with
mutable variables internally, but can still be used in a pure setting [9]. ST takes a
phantom type parameter s and an ordinary type parameter a, where s represents
a heap of mutable variables that the computation can access, and a is the result
type of the computation. There is a function runST :: (∀s . ST s a) → a that
turns an ST computation into a pure value. The use of universal quantification
ensures that a computation can only work with its own, private heap, so that
state mutations cannot be observed from the outside. ST s is a monad family
indexed by s in the sense that for every particular s, ST s is a monad.

We redefine Trans based on ST to enable transformations to use mutable
state:

newtype Trans p q = Trans (∀s .Value p→ ST s (Value q, p→ ST s q))

We represent a transformation by a computation that takes an initial source,
sets up the initial state, and returns the initial view and a propagator. The
propagator, in turn, is a computation that turns a source change into a view
change. It can access the state that the initializer has set up, because it is created
inside the initializer. Note that we can still express all transformations with pure
state using this new definition of Trans, since we can store a pure state in a
mutable variable.

The ST -based definition of Trans allows for arbitrary transformations with
mutable state. However, it restricts code reuse. For example, there is an imple-
mentation of order maintenance in the form of the order-maintenance Cabal
package [7], but we cannot use this package to implement a stable sorting trans-
formation. To see why, we have to take a closer look at the interface of this
package.

The order-maintenance package provides a type OrderT for computations
that have access to a mutable totally ordered set. OrderT takes type parameters
o, m, and a, where o is a phantom parameter that represents the ordered set,
m is an inner monad, which provides additional effects, and a is the result type
of the computation. There is a function

evalOrderT :: Monad m⇒ (∀o .OrderT o m a)→ m a

that turns an OrderT computation into a computation in the inner monad. The
use of universal quantification here is analogous to its use in runST . It ensures
that a computation can only work with its own, private ordered set. For every
monad m, OrderT o m is a monad family indexed by o.

The order-maintenance package does not allow us to incorporate an OrderT
computation into an ST computation, as this would make the ordered set explicitly
accessible via mutable variables and thus break the abstraction barrier. Therefore,

we cannot make use of the order-maintenance package with the above ST -based
definition of Trans.

If we had a variant of Trans based on the monad family OrderT o (ST s) with
indexes o and s, we could use order-maintenance for implementing incremental
stable sorting. The OrderT layer would provide us with a mutable totally ordered
set for holding the tags, and the ST layer would provide us with a heap for storing
the remaining state. Instead of providing a Trans variant for this particular monad
family, we generalize Trans such that we can use every monad family that has
the following properties:

– It is indexed by an arbitrary number of phantom type parameters that appear
at arbitrary positions in the type.

– It comes with an evaluation function, that is, a function that turns a compu-
tation in the monad family into a pure value, using universal quantification
for all the index parameters to keep mutable state private. (For ST s, this
function is runST , and for OrderT o (ST s), it is runST ◦ evalOrderT .)

We introduce a type alias TransProc whose definition resembles the ST -based
definition of Trans, but allows us to work in an arbitrary monad:

type TransProc m p q = Value p→ m (Value q, p→ m q)

We call a value of TransProc a transformation processor. We can represent a
transformation by a value of a type ∀w . TransProc µ p q where µ is a monad
family with indexes w. As special cases, we get ∀s . TransProc (ST s) p q, which
corresponds to the ST -based Trans, and ∀o s .TransProc (OrderT o (ST s)) p q,
which is appropriate for implementing incremental stable sorting.

It would be straightforward to define Trans as a transformation processor,
existentially quantifying the monad family µ. However, this would result in the
following problems:

1. Since the number of indexes and the index positions depend on µ, we would
have to bundle indexes as type tuples. This would require users of our
framework to write considerable amounts of boilerplate code, and would
require support for data type promotion, which is not a well-established
language extension.

2. Since transformation processors can use different monad families, composition
of transformation processors would be hard to implement.

Therefore, we represent a transformation by a pure function:

newtype Trans p q = Trans ((Value p, [p])→ (Value q, [q]))

The representation of a transformation captures its behavior by turning any
pair of an initial source value and a list of successive source changes into a
corresponding pair of an initial view value and a list of successive view changes.
In practice, we typically cannot provide the initial source value and all the source
changes at once, since they only become available over time. However, we can
obtain parts of the output based on only parts of the input by employing laziness.

Note that there are pure functions of the above-mentioned type that are
not proper representations of transformations, for example, functions where a
view change depends on future source changes. Therefore, we do not export the
data constructor Trans. Instead, we introduce a function trans that constructs a
transformation based on a given transformation processor.

Besides the transformation processor, the trans function needs to know the
evaluation function of the monad family of the transformation processor. So it
would be best if trans had the type

∀µ . (∀w . TransProc µ p q)→ (∀r . (∀w . µ r)→ r)→ Trans p q .

Unfortunately, the use of universal quantification over monad families would
involve a problem similar to Problem 1 described above. Therefore, we modify
the interface of trans step by step until trans has a type that does not involve
universal quantification over monad families. Some of our modifications make the
interface more permissive for the user, but none of them makes it less permissive.
Our modification steps are as follows:
1. We switch to continuation-passing style for the transformation processor,

using µ r with an arbitrary r as the result type of the continuation. As a
consequence, the first argument of trans has the type

∀r . ∀w . (TransProc µ p q → µ r)→ µ r .

2. We push the quantification ∀w under the arrow, so that the type of the first
argument becomes

∀r . (∀w . TransProc µ p q → µ r)→ (∀w . µ r) .

3. We merge the two arguments into one that is supposed to be the composition
of the former two arguments. The type of this single argument is clearly

∀r . (∀w . TransProc µ p q → µ r)→ r .

4. We generalize the type of the continuation such that it covers all monads.
The type of the trans argument becomes

∀r . (∀m .Monad m⇒ TransProc m p q → m r)→ r .

5. We drop the universal quantification of µ, which is not needed anymore, as
there are no more uses of µ. Now trans has the type

(∀r . (∀m . Monad m ⇒ TransProc m p q → m r) → r) → Trans p q .

Let us look how to construct a transformation from a transformation pro-
cessor transProc and an evaluation function eval. First, we turn transProc into
continuation-passing style, which results in the function λcont → cont transProc.
Then, we compose this function with the eval function, leading to λcont →
eval (cont transProc). Finally, we apply trans to this composed function.

By applying this technique to the monad family ST s, we can define a function
stTrans that turns an ST -based transformation processor into a value of type
Trans:

stTrans :: (∀s . TransProc (ST s) p q)→ Trans p q
stTrans transProc = trans (λcont → runST (cont transProc))

We conclude this subsection with the presentation of the trans function
implementation:

trans :: (∀r . (∀m .Monad m⇒ TransProc m p q → m r)→ r)→ Trans p q
trans cpsProcAndEval = Trans conv where

conv src = cpsProcAndEval $ λtransProc → monadicConv transProc src
monadicConv transProc ∼(val, changes) = do
∼(val ′, prop)← transProc val
changes′ ← mapM prop changes
return (val ′, changes′)

Note that the interface changes to trans have not prevented us from generating the
pure function representation, despite them making the interface more permissive.

5.3 Transformation Combinators

The use of the pure function representation for transformations becomes a chal-
lenge for the implementation of transformation combinators, that is, functions
that construct new transformations from existing ones. Examples of transfor-
mation combinators are map and gate, which are described in Sect. 3 and
Sect. 4, respectively. Change propagation of a combinator’s result may in-
volve change propagation of this combinator’s arguments. For example, when
a transformation map elemTrans propagates a sequence change of the form
ChangeAt ix elemChange, it has to use elemTrans to propagate elemChange.

A transformation combinator cannot directly use the Trans data constructor
to construct its result, since Trans is private; it has to invoke the trans function
instead. Therefore, the combinator must represent its result by a transformation
processor, which it can feed to trans. In particular, it must implement change
propagation via a propagator whose type has the form p→ µ q. Such a propagator
is called with one change at a time. To propagate a given change, it may need
to propagate individual changes using the arguments of the combinator. The
problem is that the arguments are represented by pure functions that take all
their source changes at once and therefore cannot propagate changes individually.

As a solution, we develop a function toSTProc that turns a transformation
into an ST -based transformation processor. Using toSTProc, a transformation
combinator can obtain transformation processors for all its arguments and use
them to individually propagate changes.

A transformation processor toSTProc (Trans conv) has to apply conv to the
pair of the initial source and the list of all source changes in order to receive
the initial view and the view changes. So it has to provide the list of all source
changes immediately, although the source changes become known only by later
propagator calls. To resolve this conflict, we let the propagator put the source
changes into a channel and let the transformation processor construct a single lazy
list of all future channel elements when it is initially invoked. For this purpose,

we implement channel support for the ST monad family. This support is inspired
by the Control.Concurrent.Chan module, which works with the IO monad.

We introduce a type Channel such that a value of a type Channel s a is
a channel that works with the monad ST s and contains elements of type a.
Furthermore, we provide a function newChannel :: ST s (Channel s a, [a]) that
creates an empty channel and returns it together with the lazy list of its future
elements, and a function writeChannel :: Channel s a→ a→ ST s () that puts
an element into a channel.

We are now able to convert transformations into ST -based transformation
processors:

toSTProc :: Trans p q → TransProc (ST s) p q
toSTProc (Trans conv) val = do

(chan, changes)← newChannel
let (val ′, changes′) = conv (val, changes)
remainderRef ← newSTRef changes′

let prop change = do
writeChannel chan change
next : further ← readSTRef remainderRef
writeSTRef remainderRef further
return next

return (val ′, prop)

A transformation processor constructed by toSTProc creates a channel for the
source changes and passes its contents together with the initial source to the
pure function that represents the given transformation. This way, the transfor-
mation processor obtains the initial view and a lazy list of future view changes.
The propagator puts the given source change into the channel and fetches the
corresponding view change from the list of view changes. For this purpose, the
suffix of the view change list that contains the future view changes is kept in a
mutable variable.

6 Related Work

Approaches to incremental computing differ by the amount of automation they
provide. Generally, automation of change propagation relieves the programmer
from manual design of propagation algorithms and the obligation to prove that
these algorithms are correct. On the other hand, automation restricts control over
incrementalization strategies, which may result in suboptimal time complexity.

We have tried to find a middle ground between automation and potential for
manual intervention. A user of our framework can manually define notions of
change for core data types and implement core transformations by specifically
crafted algorithms. On the other hand, our framework offers composability of
transformations and types of changeable data, allowing the construction of
complex incremental programs from the hand-crafted building blocks.

Cai et al. [3] follow a similar approach. Like us, they allow the user to define
change types and change propagation algorithms for core data types. Based on
these, they can incrementalize arbitrary λ-terms by means of a static transforma-
tion. In one respect, their automation goes further than ours, since it can handle
higher-order programs. In another respect, however, their automation is more
restrictive, because it uses only transformations with a pure state that reflects
the current source value. We conjecture that this restriction necessarily results in
change propagation with suboptimal time complexity for some transformations,
for example, incremental stable sorting.

Substantial contributions to the field of fully automatic incremental computing
are due to Acar [1]. His key approach is executing an ordinary program in an
incremental fashion by maintaining a dynamic dependency graph. Based on this
idea, Acar has developed the technique of self-adjusting computation. This method
allows a user to write a function in the usual way and then have it incrementalized
automatically by the compiler. Unfortunately, this level of automation makes it
complicated to analyze the complexity of change propagation. A user who is not
satisfied with the result of automatic incrementalization has little clue about how
to change the implementation of his function to make it perform better when
incrementalized. For example, the typical accumulator-based implementation of
the reverse function requires linear time for change propagation. One can achieve
logarithmic time by implementing reverse using a divide-and-conquer strategy,
but this is not obvious for the lesser experienced user.

Carlsson [4] has implemented adaptive functional programming, a subset of
self-adjusting computation, in Haskell. The key contribution of his work is the
use of monads for integrating incremental computing into a pure language.

Self-adjusting computation does not perform well in the presence of certain
reuse patterns, particularly sharing (using a computation in different contexts),
swapping (changing the order of subcomputations), and switching (toggling
computations back and forth). As a solution, Hammer et al. [8] have developed
the λcdd

ic -calculus and the Adapton library, which provide automatic incremental
computing based on a demand-driven semantics.

Maier et al. [10] have developed the Scala.React framework, which supports
functional incremental reactive lists. The authors use the notions of reversible
and associative folds, which are usual folds with some additional constraints
on their arguments. These folds can be used for implementing new incremental
functions. Obtaining incremental operations on reactive lists means translating
the linear recursion of sequential folds into tree recursion of associative folds.

7 Conclusions and Further Work

We have developed a framework for incremental computing in Haskell. This
framework allows the user to associate different notions of change with different
data types and implement change propagation based on arbitrary monad families
whose computations can be turned into pure values. Furthermore, we have
implemented incremental versions of several sequence operations. The user of

our framework has clear guidelines on how to implement new notions of change,
transformations, and transformation combinators. By applying the described
techniques, it is possible to achieve complex incremental computing behavior.

In the future, we want to develop a generic notion of change for inductive data
types and use it to define generic transformations based on recursion schemes.
We expect that general recursion schemes cannot be efficiently incrementalized.
However, we plan to characterize recursion schemes that allow for efficient change
propagation. All functions that are defined in terms of these recursion schemes
can then be efficiently incrementalized automatically.

Acknowledgements

We want to thank Umut Acar, Yan Chen, Paolo Giarrusso, and Tarmo Uustalu
for helpful discussions about the topics of this paper. This research was supported
by the individual research grant PUT763 of the Estonian Research Council.

References

1. Acar, U.A.: Self-Adjusting Computation. Ph.D. thesis, Carnegie Mellon University,
Pittsburgh, Pennsylvania (May 2005)

2. Acar, U.A., Blelloch, G., Ley-Wild, R., Tangwongsan, K., Turkoglu, D.: Trace-
able data types for self-adjusting computation. In: Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’10). pp. 483–496. ACM, New York (2010)

3. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for higher-
order languages: Incrementalizing λ-calculi by static differentiation. In: Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation. pp. 145–155. ACM, New York (2014)

4. Carlsson, M.: Monads for incremental computing. In: Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming. pp. 26–35.
ACM, New York (2002)

5. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. Tech. Rep.
CMU-CS-88-113, Carnegie Mellon University, Pittsburgh, Pennsylvania (1988)

6. Firsov, D., Jeltsch, W.: incremental-computing-0.0.0.0 (Feb 2015), http://hackage.
haskell.org/package/incremental-computing-0.0.0.0, Haskell Cabal package

7. Firsov, D., Jeltsch, W.: order-maintenance-0.1.1.0 (Nov 2015), http://hackage.
haskell.org/package/order-maintenance-0.1.1.0, Haskell Cabal package

8. Hammer, M.A., Phang, K.Y., Hicks, M., Foster, J.S.: Adapton: Composable,
demand-driven incremental computation. In: Proceedings of the 35st ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’14). pp. 156–166. ACM, New York (2014)

9. Launchbury, J., Peyton Jones, S.: State in Haskell. LISP and Symbolic Computation
8(4), 293–341 (Dec 1995)

10. Maier, I., Odersky, M.: Higher-order reactive programming with incremental lists.
In: Castagna, G. (ed.) Object-Oriented Programming, Lecture Notes in Computer
Science, vol. 7920, pp. 707–731. Springer (2013)

http://hackage.haskell.org/package/incremental-computing-0.0.0.0
http://hackage.haskell.org/package/incremental-computing-0.0.0.0
http://hackage.haskell.org/package/order-maintenance-0.1.1.0
http://hackage.haskell.org/package/order-maintenance-0.1.1.0

	Purely Functional Incremental Computing

