(Un)satisfiability of
Comparison-Based
Non-Malleability for Commitments

Denis Firsov, Sven Laur, and Ekaterina Zhuchko

Motivation

= Problem: developing cryptographic proofs is a

tedious and error-prone task.

-

“In our opinion,
many proofs in
cryptography have
become essentially
unverifiable. Our
field may be
approaching a
crisis of rigor.”

N /

(Bellare and Rogeway, 2004)

-

\

“We generate more

proofs than we
carefully verify.”

(Hallevi, 2005)

N

“Security proofs for
even simple
cryptographic
systems are
dangerous and
ugly beasts.”

/

(Bristol Crypto Group, 2017)

Motivation

= Formal methods to the rescue!

* Pen-and-paper proofs vs.
formally verified proofs
(machine-checked). ,/

= EasyCrypt is an interactive i
theorem prover for reasonmg&é N/
about cryptographic schemes g}f"”
and definitions. S

Commitment Schemes

= Two participating parties: sender
and recelver. Commit phase

= Two-phase protocol: commit and
decommit.
® ‘lﬂ Commit (pk,m) .
Sender

= The sender has a private message.
= The sender commits to a message =y

\ \
.......

and sends it to the recelver. n Commit(pk,m)

Receiver

Commitment Schemes

Decommit phase

| *|

Sender Receiver

= At a later stage, the receiver can
open the commitment and read the
message.

Security Properties: Hiding

Commit phase

‘@l Commit (pk,m) AQ

Sender Receiver

\ l
.......

m Commit (pk,m)

= Hiding: the receiver cannot see the message inside the commitment.

= Note that Commit(pk, m) is a parameterised distribution of
commitments.

Security Properties: Binding

Decommit phase

-.ﬁ.
|| Q
™ ™

Sender Receiver

Commit (pk,m) m

. the sender is bound to the committed message.

The commitment should not have any secret backdoors i.e. open to
two different messages.

Motivating Example: Blind Auction

Trusted Party

Motivating Example: Blind Auction

N

Trusted Party

Motivating

Ei%

—xample: Blind Auction

Honest
Bidder

RNoJl :
‘ Commit(pk,-)
a |

Public channel

Trusted Party

10

Motivating Example: Blind Auction

ah
anest
Bidder Public channel
------------------------- Dishonest
Bidder

Trusted Party "

Motivating

- Blind Auction

Honest
Bidder

Dishonest
Bidder

Trusted Party

12

Motivating Example: Blind Auction

Honest
Bidder

Coriwmit(pk,-+ X

Public channel

Dishonest
) Bidder

Trusted Party
13

Motivating Example: Blind Auction

We have a commitment scheme that is both hiding and
binding.

The attack scenario is possible due to the of the
commitment scheme.

Contribution

There are two ways to define non-malleability:
Simulation-based definition;
Comparison-based definition.

Contribution

There are two ways to define non-malleability:
Simulation-based definition;
Comparison-based definition.

Simulation-based definition is hard to falsity.

Example of falsifiability:
Find collisions in SHA-256;
SHA256(message;) = hash = SHA256(message,) .

Contribution

There are two ways to define non-malleability:
Simulation-based definition;
Comparison-based definition.

Simulation-based definition is hard to falsity.
Our goal was to give a more falsifiable definition.

Contribution

There are two ways to define non-malleability:
Simulation-based definition;
Comparison-based definition.

Simulation-based definition is hard to falsity.
Our goal was to give a more falsifiable definition.

But we show that:

Itis for all “good” commitment schemes.
Itis for the “bad” commitment schemes.

Comparison-Based Non-Malleability

A commitment scheme C = (Gen, Commit,Verify) is comparison-based

non-malleable iff for any efficient adversary A, the advantage AdvC(C, A) is
negligible, where

AdvC(C, A) := |Pr[r < GNy(C, A).main() : r = 1]
— Prlr < GN{(C, A).main() : r =1]|.

GNy(C, A) GN1(C,A)

1: pk & Gen 1: pk & Gen

2: M+ A.init(pk) 2: M+ A.init(pk)

3: m&EM 3: mEMndEM

1: (c,d) & Commit(pk,m) 1: (c,d) & Commit(pk,m)
5: (c',R) + A.commit(c) 5: (c',R) + A.commit(c)
6: (d,m')« A.decommit(d) 6: (d,m')« A.decommit(d)
7: v Verify(pk,m',c,d) 7: v Verify(pk,m',c,d)
8: return v A R(m,m)Ac#c 8: returnvAR(n,m')Ac#c

Comparison-Based Non-Malleability

A commitment scheme C = (Gen, Commit,Verify) is comparison-based

non-malleable iff for any efficient adversary A, the advantage AdvC(C, A) is
negligible, where

AdvC(C, A) := |Pr[r < GNy(C, A).main() : r = 1]
— Prlr < GN{(C, A).main() : r =1]|.

GNy(C, A) GN1(C,A)

1: pk & Gen 1: pk & Gen

2: M+ A.init(pk) 2: M+ A.init(pk)

3: m&EM 3: mEMndEM

1: (c,d) & Commit(pk,m) 1: (c,d) & Commit(pk,m)
5: (c',R) + A.commit(c) 5: (c',R) + A.commit(c)
6: (d,m')« A.decommit(d) 6: (d,m')« A.decommit(d)
7: v Verify(pk,m',c,d) 7: v Verify(pk,m',c,d)
8: return v A R(m,m)Ac#c 8: returnvAR(n,m')Ac#c

Comparison-Based Non-Malleability

A commitment scheme C = (Gen, Commit,Verify) is comparison-based

non-malleable iff for any efficient adversary A, the advantage AdvC(C, A) is
negligible, where

AdvC(C, A) := |Pr[r < GNy(C, A).main() : r = 1]
— Prlr < GN{(C, A).main() : r =1]|.

GNy(C, A) GN1(C,A)

1: pk & Gen 1: pk & Gen

2: M+ A.init(pk) 2: M+ A.init(pk)

3: m&EM 3: mEM;ndEM

1: (c,d) & Commit(pk,m) 1: (c,d) & Commit(pk,m)
5: (c',R) + A.commit(c) 5: (c',R) + A.commit(c)
6: (d,m')« A.decommit(d) 6: (d,m')« A.decommit(d)
7: v Verify(pk,m',c,d) 7: v Verify(pk,m',c,d)
8: return v A R(m,m)Ac#c 8: returnvAR(n,m')Ac#c

Comparison-Based Non-Malleability

A commitment scheme C = (Gen, Commit,Verify) is comparison-based

non-malleable iff for any efficient adversary A, the advantage AdvC(C, A) is
negligible, where

AdvC(C, A) := |Pr[r < GNy(C, A).main() : r = 1]
— Prlr < GN{(C, A).main() : r =1]|.

GNy(C, A) GN1(C,A)

1: pk & Gen 1: pk & Gen

2: M+ A.init(pk) 2: M+ A.init(pk)

3: m&EM 3: mEM;ndEM

1: (c,d) & Commit(pk,m) 1: (c,d) & Commit(pk,m)
5: (c',R) + A.commit(c) 5: (c',R) + A.commit(c)
6: (d,m')« A.decommit(d) 6: (d,m')« A.decommit(d)
7: v Verify(pk,m',c,d) 7: v Verify(pk,m',c,d)
8: return v A R(m,m')Ac#c 8: returnvAR(n,m')Ac#c

Comparison-Based Non-Malleability

A commitment scheme C = (Gen, Commit,Verify) is comparison-based

non-malleable iff for any efficient adversary A, the advantage AdvC(C, A) is
negligible, where

AdvC(C, A) := |Pr[r < GNy(C, A).main() : r = 1]
— Prlr < GN{(C, A).main() : r =1]|.

GNy(C, A) GN1(C,A)

1: pk & Gen 1: pk & Gen

2: M+ A.init(pk) 2: M+ A.init(pk)

3: m&EM 3: mEM;ndEM

1: (c,d) & Commit(pk,m) 1: (c,d) & Commit(pk,m)
5: (c',R) + A.commit(c) 5: (c',R) + A.commit(c)
6: (d,m')«+ A.decommit(d) 6: (d,m')«+ A.decommit(d)
7: v Verify(pk,m',c,d) 7: v Verify(pk,m',c,d)
8: return vAR(m,m)Ac#c 8: returnvAR(n,m')Ac#c

Adversary for Comparison-Based
Non-Malleability

A.init(pk)
A.pk <+ pk
return {0, 1}

We construct an adversary A who executes a successful attack.
A outputs a uniform distribution on bits.

Adversary for Comparison-Based
Non-Malleability

A.init(pk) A.commit(c)
A.pk <+ pk Ac+c
return {0,1} R < dmomi.mo =0Am1 =0

(c',d") & Commit(pk,0)

return (R, c)

The relation R(m, m") only holds when both messages are 0.
A outputs the relation R and the commitment on message 0.

Adversary for Comparison-Based
Non-Malleability

A.init(pk) A.commit(c) A.decommit(d)
A.pk < pk Acc+c if Verify(pk,0,c,d) then
return {0, 1} R < dmomi.mo =0Am; =0 return (d’,0)

(c',d") & Commit(pk,0) else |

return (R, c)

A checks if ¢ was a commitment on the message m = 0:
m = 0, then return (d’, 0).
m # 0, then fail the game.

Adversary for Comparison-Based
Non-Malleability

A.init(pk) A.commit(c) A.decommit(d)
A.pk < pk Acc+c if Verify(pk,0,c,d) then
return {0, 1} R < dmomi.mo =0Am; =0 return (d’,0)

(c',d") & Commit(pk,0) else |

return (R, c)

Goal: to calculate the advantage of A in winning the non-
malleability games.

heorem

For any functional commitment scheme C = (Gen,Commit, Verify) the
adversary A has the following comparison-based non-malleability advantage:

B pk & Gen; (c,d) & Commit(pk,0);
AdvC(C, A) = P d) & Commit(pk,0) : o = ¢

1 1
4 4

heorem

For any functional commitment scheme C = (Gen,Commit, Verify) the
adversary A has the following comparison-based non-malleability advantage:

pk & Gen; (c,d) & Commit(pk,0);

1 1
AdvC(C, A) = 7 — 5 P [(¢, d') & Commit(ph,0) : c = &

It the commitments generated by Commit have enough
randomness then AdvC(C,A) = %and IS not negligible.

Some Intuition

A.init(pk) A.commit(c) A.decommit(d)
A.pk < pk Acc+c if Verify(pk,0,c,d) then
return {0, 1} R < dmomi.mo =0Am; =0 return (d’,0)

(c',d") & Commit(pk,0) else |

return (R, c)

A Is able to successfully execute the attack because it has all
the information during decommit.

A opens the commitment and aborts the game if necessary.

Satisfiability for the “Bad Case”

Constant commitment scheme, where {x} is a singleton set:

Gen := {x}

Commit(pk, m) := (x,m)

Verify(pk,m,c,d) := if m = d then 1 else 0
-Or any message, the commitment is a constant value.
t Is hiding and non-binding.

t Is also non-malleable according to the comparison-based
definition.

Conclusion

Comparison-based definition:
|s unsatistiable for all realistic commitment schemes;
|s satisfiable for a paradoxical commitment scheme.

It does require a lot of time and effort to formally verity a
cryptographic proof.
Example: comparison-based proof was 4 lines on paper
but 600 lines of code.

A lot of manual effort.
Future work: application in timestamping.

Thank You!

