
(Un)satisfiability of
Comparison-Based

Non-Malleability for Commitments
Denis Firsov, Sven Laur, and Ekaterina Zhuchko

Motivation
§ Problem: developing cryptographic proofs is a

tedious and error-prone task.

“In our opinion,
many proofs in

cryptography have
become essentially

unverifiable. Our
field may be

approaching a
crisis of rigor.”

“We generate more
proofs than we
carefully verify.”

“Security proofs for
even simple

cryptographic
systems are

dangerous and
ugly beasts.”

(Hallevi, 2005) (Bristol Crypto Group, 2017)(Bellare and Rogeway, 2004)

2

Motivation
§ Formal methods to the rescue!
§ Pen-and-paper proofs vs.

formally verified proofs
(machine-checked).

§ EasyCrypt is an interactive
theorem prover for reasoning
about cryptographic schemes
and definitions.

3

§ Two participating parties: sender
and receiver.

§ Two-phase protocol: commit and
decommit.

§ The sender has a private message.
§ The sender commits to a message

and sends it to the receiver.

4

Commitment Schemes

5

§ Two participating parties: sender
and receiver.

§ Two-phase protocol: commit and
decommit.

§ The sender has a private message.
§ The sender commits to a message

and sends it to the receiver.
§ At a later stage, the receiver can

open the commitment and read the
message.

Commitment Schemes

6

§ Hiding: the receiver cannot see the message inside the commitment.
§ Note that 𝐶𝑜𝑚𝑚𝑖𝑡 𝑝𝑘,𝑚 is a parameterised distribution of

commitments.

Security Properties: Hiding

7

§ Binding: the sender is bound to the committed message.
§ The commitment should not have any secret backdoors i.e. open to

two different messages.

Security Properties: Binding

Motivating Example: Blind Auction

8

Motivating Example: Blind Auction

9

Motivating Example: Blind Auction

10

Public channel

Motivating Example: Blind Auction

11

Public channel

Motivating Example: Blind Auction

12

Public channel

Motivating Example: Blind Auction

13

Public channel

Motivating Example: Blind Auction

14

§We have a commitment scheme that is both hiding and
binding.

§ The attack scenario is possible due to the malleability of the
commitment scheme.

Contribution
§ There are two ways to define non-malleability:

§ Simulation-based definition;
§Comparison-based definition.

15

Contribution
§ There are two ways to define non-malleability:

§ Simulation-based definition;
§Comparison-based definition.

§ Simulation-based definition is hard to falsify.
§ Example of falsifiability:

§ Find collisions in SHA-256;
§ 𝑆𝐻𝐴256 𝑚𝑒𝑠𝑠𝑎𝑔𝑒! = ℎ𝑎𝑠ℎ = 𝑆𝐻𝐴256 𝑚𝑒𝑠𝑠𝑎𝑔𝑒" .

16

Contribution
§ There are two ways to define non-malleability:

§ Simulation-based definition;
§Comparison-based definition.

§ Simulation-based definition is hard to falsify.
§ Our goal was to give a more falsifiable definition.

17

Contribution
§ There are two ways to define non-malleability:

§ Simulation-based definition;
§Comparison-based definition.

§ Simulation-based definition is hard to falsify.
§ Our goal was to give a more falsifiable definition.

§But we show that:
§ It is unsatisfiable for all “good” commitment schemes.
§ It is satisfiable for the “bad” commitment schemes.

18

19

Comparison-Based Non-Malleability
A commitment scheme C = (Gen,Commit, V erify) is comparison-based

non-malleable iff for any efficient adversary A, the advantage AdvC(C,A) is
negligible, where

AdvC(C,A) := |Pr [r ← GN0(C,A).main() : r = 1]

− Pr [r ← GN1(C,A).main() : r = 1] |.

GN0(C,A)

1 : pk $← Gen

2 : M← A.init(pk)

3 : m $←M

4 : (c, d) $← Commit(pk,m)

5 : (c′, R)← A.commit(c)

6 : (d′,m′)← A.decommit(d)

7 : v ← V erify(pk,m′, c′, d′)

8 : return v ∧R(m,m′) ∧ c #= c′

GN1(C,A)

1 : pk $← Gen

2 : M← A.init(pk)

3 : m $←M;n $←M

4 : (c, d) $← Commit(pk,m)

5 : (c′, R)← A.commit(c)

6 : (d′,m′)← A.decommit(d)

7 : v ← V erify(pk,m′, c′, d′)

8 : return v ∧R(n,m′) ∧ c #= c′

20

Comparison-Based Non-Malleability
A commitment scheme C = (Gen,Commit, V erify) is comparison-based

non-malleable iff for any efficient adversary A, the advantage AdvC(C,A) is
negligible, where

AdvC(C,A) := |Pr [r ← GN0(C,A).main() : r = 1]

− Pr [r ← GN1(C,A).main() : r = 1] |.

GN0(C,A)

1 : pk $← Gen

2 : M← A.init(pk)

3 : m $←M

4 : (c, d) $← Commit(pk,m)

5 : (c′, R)← A.commit(c)

6 : (d′,m′)← A.decommit(d)

7 : v ← V erify(pk,m′, c′, d′)

8 : return v ∧R(m,m′) ∧ c #= c′

GN1(C,A)

1 : pk $← Gen

2 : M← A.init(pk)

3 : m $←M;n $←M

4 : (c, d) $← Commit(pk,m)

5 : (c′, R)← A.commit(c)

6 : (d′,m′)← A.decommit(d)

7 : v ← V erify(pk,m′, c′, d′)

8 : return v ∧R(n,m′) ∧ c #= c′

21

Comparison-Based Non-Malleability
A commitment scheme C = (Gen,Commit, V erify) is comparison-based

non-malleable iff for any efficient adversary A, the advantage AdvC(C,A) is
negligible, where

AdvC(C,A) := |Pr [r ← GN0(C,A).main() : r = 1]

− Pr [r ← GN1(C,A).main() : r = 1] |.

GN0(C,A)

1 : pk $← Gen

2 : M← A.init(pk)

3 : m $←M

4 : (c, d) $← Commit(pk,m)

5 : (c′, R)← A.commit(c)

6 : (d′,m′)← A.decommit(d)

7 : v ← V erify(pk,m′, c′, d′)

8 : return v ∧R(m,m′) ∧ c #= c′

GN1(C,A)

1 : pk $← Gen

2 : M← A.init(pk)

3 : m $←M;n $←M

4 : (c, d) $← Commit(pk,m)

5 : (c′, R)← A.commit(c)

6 : (d′,m′)← A.decommit(d)

7 : v ← V erify(pk,m′, c′, d′)

8 : return v ∧R(n,m′) ∧ c #= c′

22

Comparison-Based Non-Malleability
A commitment scheme C = (Gen,Commit, V erify) is comparison-based

non-malleable iff for any efficient adversary A, the advantage AdvC(C,A) is
negligible, where

AdvC(C,A) := |Pr [r ← GN0(C,A).main() : r = 1]

− Pr [r ← GN1(C,A).main() : r = 1] |.

GN0(C,A)

1 : pk $← Gen

2 : M← A.init(pk)

3 : m $←M

4 : (c, d) $← Commit(pk,m)

5 : (c′, R)← A.commit(c)

6 : (d′,m′)← A.decommit(d)

7 : v ← V erify(pk,m′, c′, d′)

8 : return v ∧R(m,m′) ∧ c #= c′

GN1(C,A)

1 : pk $← Gen

2 : M← A.init(pk)

3 : m $←M;n $←M

4 : (c, d) $← Commit(pk,m)

5 : (c′, R)← A.commit(c)

6 : (d′,m′)← A.decommit(d)

7 : v ← V erify(pk,m′, c′, d′)

8 : return v ∧R(n,m′) ∧ c #= c′

23

Comparison-Based Non-Malleability
A commitment scheme C = (Gen,Commit, V erify) is comparison-based

non-malleable iff for any efficient adversary A, the advantage AdvC(C,A) is
negligible, where

AdvC(C,A) := |Pr [r ← GN0(C,A).main() : r = 1]

− Pr [r ← GN1(C,A).main() : r = 1] |.

GN0(C,A)

1 : pk $← Gen

2 : M← A.init(pk)

3 : m $←M

4 : (c, d) $← Commit(pk,m)

5 : (c′, R)← A.commit(c)

6 : (d′,m′)← A.decommit(d)

7 : v ← V erify(pk,m′, c′, d′)

8 : return v ∧R(m,m′) ∧ c #= c′

GN1(C,A)

1 : pk $← Gen

2 : M← A.init(pk)

3 : m $←M;n $←M

4 : (c, d) $← Commit(pk,m)

5 : (c′, R)← A.commit(c)

6 : (d′,m′)← A.decommit(d)

7 : v ← V erify(pk,m′, c′, d′)

8 : return v ∧R(n,m′) ∧ c #= c′

24

§We construct an adversary 𝐴 who executes a successful attack.
§𝐴 outputs a uniform distribution on bits.

Adversary for Comparison-Based
Non-Malleability

A.init(pk)

A.pk ← pk

return {0, 1}

25

§ The relation R(𝑚,𝑚′) only holds when both messages are 0.
§𝐴 outputs the relation R and the commitment on message 0.

Adversary for Comparison-Based
Non-Malleability

A.init(pk)

A.pk ← pk

return {0, 1}

A.commit(c)

A.c← c

R← λm0m1.m0 = 0 ∧m1 = 0

(c′, d′) $← Commit(pk, 0)

return (R, c′)

26

§𝐴 checks if 𝑐 was a commitment on the message 𝑚 = 0:
§𝑚 = 0, then return (𝑑!, 0).
§𝑚 ≠ 0, then fail the game.

Adversary for Comparison-Based
Non-Malleability

A.init(pk)

A.pk ← pk

return {0, 1}

A.commit(c)

A.c← c

R← λm0m1.m0 = 0 ∧m1 = 0

(c′, d′) $← Commit(pk, 0)

return (R, c′)

A.decommit(d)

if V erify(pk, 0, c, d) then

return (d′, 0)

else ⊥

27

§Goal: to calculate the advantage of 𝐴 in winning the non-
malleability games.

Adversary for Comparison-Based
Non-Malleability

A.init(pk)

A.pk ← pk

return {0, 1}

A.commit(c)

A.c← c

R← λm0m1.m0 = 0 ∧m1 = 0

(c′, d′) $← Commit(pk, 0)

return (R, c′)

A.decommit(d)

if V erify(pk, 0, c, d) then

return (d′, 0)

else ⊥

28

Theorem

For any functional commitment scheme C = (Gen,Commit, V erify) the
adversary A has the following comparison-based non-malleability advantage:

AdvC(C,A) =
1

4
−

1

4
· Pr

[

pk $
← Gen; (c, d) $

← Commit(pk, 0);
(c′, d′) $

← Commit(pk, 0) : c = c′

]

.

29

Theorem

For any functional commitment scheme C = (Gen,Commit, V erify) the
adversary A has the following comparison-based non-malleability advantage:

AdvC(C,A) =
1

4
−

1

4
· Pr

[

pk $
← Gen; (c, d) $

← Commit(pk, 0);
(c′, d′) $

← Commit(pk, 0) : c = c′

]

.

§ If the commitments generated by 𝐶𝑜𝑚𝑚𝑖𝑡 have enough
randomness then 𝐴𝑑𝑣𝐶 𝐶, 𝐴 ≈ "

#
and is not negligible.

30

§𝐴 is able to successfully execute the attack because it has all
the information during decommit.

§𝐴 opens the commitment and aborts the game if necessary.

A.init(pk)

A.pk ← pk

return {0, 1}

A.commit(c)

A.c← c

R← λm0m1.m0 = 0 ∧m1 = 0

(c′, d′) $← Commit(pk, 0)

return (R, c′)

A.decommit(d)

if V erify(pk, 0, c, d) then

return (d′, 0)

else ⊥

Some Intuition

Satisfiability for the “Bad Case”

31

§Constant commitment scheme, where {∗} is a singleton set:

§ For any message, the commitment is a constant value.
§ It is hiding and non-binding.
§ It is also non-malleable according to the comparison-based

definition.

Gen := {∗}

Commit(pk,m) := (∗,m)

V erify(pk,m, c, d) := if m = d then 1 else 0

Conclusion
§Comparison-based definition:

§ Is unsatisfiable for all realistic commitment schemes;
§ Is satisfiable for a paradoxical commitment scheme.

§ It does require a lot of time and effort to formally verify a
cryptographic proof.
§ Example: comparison-based proof was 4 lines on paper

but 600 lines of code.
§A lot of manual effort.

§ Future work: application in timestamping.

32

Thank You!

33

