
Zero-Knowledge in EasyCrypt

Denis Firsov1,2 and Dominique Unruh3

1Guardtime
2Tallinn University of Technology

3Tartu University

July 10, 2023

1 / 40

Main Goal

Implement a framework in EasyCrypt theorem prover which formally defines
notions associated with sigma-protocols and provides generic lemmas which
capture common patterns in proofs.

2 / 40

Main Contributions: Quick Overview

Formal definitions: completeness, special soundness, soundness,
proof-of-knowledge, zero-knowledge.
Generic derivations (in computational and information-theoretical setting):

Proof-of-knowledge from special soundness.
Soundness from proof-of-knowledge.
Zero-knowledge from one-shot simulator.
Sequential composition.

Use cases: Fiat-Shamir, Schnorr, and Blum protocols.

Stepping stone for end-to-end verified and executable sigma-protocols.

3 / 40

Background: EasyCrypt

EasyCrypt is a theorem prover for verifying cryptographic constructions,
where protocols are specified as imperative programs and adversaries are
modelled by abstract program modules.

It has four built-in logics:
a probabilistic, relational Hoare logic (pRHL);
a probabilistic Hoare logic (pHL);
an ordinary (possibilistic) Hoare logic (HL);
an ambient higher-order logic for proving general mathematical facts and
connecting judgments in the other logics.

Also, we showed that EasyCrypt programs could be “reflected” into their
probabilistic semantics to carry out proofs which rely on more advanced
mathematical facts.

4 / 40

Background: EasyCrypt

EasyCrypt is a theorem prover for verifying cryptographic constructions,
where protocols are specified as imperative programs and adversaries are
modelled by abstract program modules.
It has four built-in logics:

a probabilistic, relational Hoare logic (pRHL);
a probabilistic Hoare logic (pHL);
an ordinary (possibilistic) Hoare logic (HL);
an ambient higher-order logic for proving general mathematical facts and
connecting judgments in the other logics.

Also, we showed that EasyCrypt programs could be “reflected” into their
probabilistic semantics to carry out proofs which rely on more advanced
mathematical facts.

5 / 40

Background: EasyCrypt

EasyCrypt is a theorem prover for verifying cryptographic constructions,
where protocols are specified as imperative programs and adversaries are
modelled by abstract program modules.
It has four built-in logics:

a probabilistic, relational Hoare logic (pRHL);
a probabilistic Hoare logic (pHL);
an ordinary (possibilistic) Hoare logic (HL);
an ambient higher-order logic for proving general mathematical facts and
connecting judgments in the other logics.

Also, we showed that EasyCrypt programs could be “reflected” into their
probabilistic semantics to carry out proofs which rely on more advanced
mathematical facts.

6 / 40

Notation

We write
Pr [r ← X .f(i) @m : P]

to denote probability of event P after executing procedure f with argument i of
module X at initial state m.

7 / 40

Background: Sigma Protocols

Every sigma protocol is designed to work with a specific formal NP-language.
The language is induced by a relation between statements and witnesses.
Then a protocol for the relation must allow the prover to convince the verifier
that the prover knows a witness for some given statement without revealing
anything else about itself.

Prover(s,w)
commitment−−−−−−−−−−−−−−−−−−−−−−−−→ Verifier(s)

challenge←−−−−−−−−−−−−−−−−−−−−−−−−
response−−−−−−−−−−−−−−−−−−−−−−−−→ Accept/Reject

8 / 40

Sigma protocols: Properties

Completeness ensures the correct operation of the protocol if both prover
and verifier follow the protocol honestly.

Soundness ensures that for “wrong” statements (i.e., with no witness) a
prover can convince the verifier with only small probability.

Proof-of-knowledge guarantees that any prover that successfully
convinces the verifier actually knows a witness (and not only abstractly
that it exists).

Zero-knowledge establishes that any cheating verifier cannot learn
anything about the witness when running the protocol.

9 / 40

Sigma Protocols: Basic Parameters

abstract theory GenericProtocol.

type statement.
type witness.

type relation = statement → witness → bool.

op in_language (R:relation) statement: bool
= ∃ witness, R statement witness.

op completeness_relation : relation.
op soundness_relation : relation.
op zk_relation : relation.

10 / 40

Sigma Protocols: Basic Parameters

. . .
type commitment.
type response.
type challenge.

type transcript = commitment × challenge × response.

op verify_transcript: statement → transcript → bool.

op challenge_set: challenge list.

. . .
end GenericProtocol.

11 / 40

Completeness

Completeness ensures the correct operation of the protocol if both prover and
verifier follow the protocol honestly.

12 / 40

Completeness: Honest Prover

module type HonestProver = {

proc commitment(s:statement,w:witness) : commitment

proc response(ch:challenge) : response

}.

13 / 40

Completeness: Honest Verifier

module type HonestVerifier = {

proc challenge(s:statement,c:commitment) : challenge

proc verify(r:response) : bool

}.

14 / 40

Completeness: Game

In EasyCrypt we define completeness module to capture the interaction
between honest parties:

module Completeness(P: HonestProver, V: HonestVerifier) = {

proc run(s:statement, w:witness) = {
var commit, challenge, response, accept;
commit <@ P.commitment(s,w);
challenge <@ V.challenge(s,commit);
response <@ P.response(challenge);
accept <@ V.verify(response);
return accept;

}

}.

15 / 40

Completeness: Property

The module for default honest verifier HV is derived automatically. The user
must specify honest prover HP and a completeness lower-bound δ:

op δ : real.

lemma statistical_completeness s w m: completeness_relation s w

⇒ Pr[out ← Completeness(HP,HV).run(s,w)@m: out] ≥ δ.

“One-round” completeness must be proved manually.

16 / 40

Completeness: Sequential composition

One-round completeness implies completeness for sequential composition
generically. Below, the module CompletenessAmp runs honest-interaction
sequentially n-times.

lemma completeness_seq m s w n: completeness_relation s w ∧ 1 ≤ n

⇒ Pr[out ← CompletenessAmp(HP,HV).run(s,w,n)@m: out] ≥ δˆn.

17 / 40

Rewinding

Definition
The module A is rewindable if

1 There exists an injective mapping f from the type GA to some parameter
type sbits.

2 The module A must have a terminating procedure getState, so that the
execution of A.getState() in state m must return the value f (Gm

A) without
changing the state.

Pr
[

r ← A.getState() @m : Gfin
A = Gm

A ∧ r = f (Gm
A)

]
= 1.

3 The module A must have a terminating procedure setState, so that
whenever it gets an argument x : sbits and sets Gm

A to f−1(x) if f−1(x) is
defined. Formally, let g be of type GA then

Pr
[

r ← A.setState(f g) @m : Gfin
A = g

]
= 1.

18 / 40

Zero-Knowledge

Zero-knowledge establishes that any malicious rewindable verifier cannot
learn anything about the witness when running the protocol.

19 / 40

Zero-Knowledge: Rewindable Malicious Verifier

module type RewMaliciousVerifier = {

proc challenge(s:statement, c:commitment): challenge
proc summitup (r:response) : summary

proc getState() : sbits
proc setState(b:sbits) : unit

}.

20 / 40

Zero-Knowledge: Distinguisher

module type ZKDistinguisher = {

proc guess(s:statement,w:witness,sum:summary) : bool

}.

21 / 40

Zero-Knowledge: Real Experiment

module ZKReal(P: HonestProver,V: MaliciousVerifier,D: ZKDistinguisher)={

proc run(s:statement, w:witness) = {
var commit, challenge, response, summary, guess;

commit <@ P.commitment(s,w);
challenge <@ V.challenge(s,commit);
response <@ P.response(challenge);
summary <@ V.summitup(s,response);

guess <@ D.guess(s,w,summary);
return guess;

}

}.

22 / 40

Zero-Knowledge: Simulator for Ideal Game

module type Simulator(V: RewMaliciousVerifier) = {

proc simulate(s: statement) : summary

}.

23 / 40

Zero-Knowledge: Ideal Experiment

module ZKIdeal(S:Simulator,V:RewMaliciousVerifier,D:ZKDistinguisher) = {

proc run(s: statement, w: witness) = {
var summary, guess;

summary <@ S(V).simulate(s);
guess <@ D.guess(s,w,summary);

return guess;
}

}.

24 / 40

Zero-Knowledge: Desired Property

There must exist an efficient simulator Sim so that for any rewindable
malicious verifier V, and distinguisher D the absolute difference between real
and ideal games is bounded from above by ε :

op ε: real.

lemma statistical_zk s w m: zk_relation s w ⇒
let real_prob = Pr[out ← ZKReal(HP,V,D).run(s,w)@m: out] in
let ideal_prob = Pr[out ← ZKIdeal(Sim,V,D).run(s,w)@m: out] in

|ideal_prob - real_prob| ≤ ε.

25 / 40

Zero-Knowledge: Direct proofs are hard!

Proving zero-knowledge directly could be challenging. Alternative common
strategy is to derive zero-knowledge from “one-shot” simulator.

26 / 40

Zero-Knowledge: One-Shot Simulator

One-shot simulator Sim1 is a simulator which in addition to summary
returns a “success-event”:
module type Simulator1(V: RewMaliciousVerifier) = {

proc run(s: statement) : bool × summary
}.

We ask for the lower-bound σ on that “success-event”
op σ : real.

lemma sim1_lower_bound stat m:
Pr[(succ, _) ← Sim1(V).run(stat)@m: succ] ≥ σ.

We also ask simulator to rewind itself and the malicious verifer in case it
was not successfull:
lemma rewind_sim istate m: (glob Sim1(V))) = istate

Pr[(succ, _) ← Sim1(V).run(s)@m:
!succ ⇒ (glob Sim1(V)) = istate] = 1.

27 / 40

Zero-Knowledge: One-Shot Simulator

The absolute difference between success-probabilities of the real game
conditioned on the success-event and the ideal game must be bounded from
above by ε :

lemma sim1_zk_cond3 s w m: zk_relation s w ⇒
let sim1_real
= Pr[(succ, out) ← ZKReal’(HP,V,D).run(s,w)@m: succ ∧ out] in
let sim1_ideal = Pr[out ← ZKIdeal(Sim1,V,D).main(s,w)@m: out] in
let succ_event = Pr[(succ, _) ← Sim1(V).run(s)@m: succ] in

|sim1_real / succ_event - sim1_ideal| ≤ ε.

28 / 40

Zero-Knowledge: Many-Shot Simulator for One-Round ZK

Given such one-shot simulator we define simulator SimN which runs one-shot
simulator until it succeeds, but at most N times. Then we generically conclude
the following statistical zero-knowledge:

lemma statistical_zk s w m: zk_relation s w ⇒
let real_prob = Pr[out ← ZKReal(HP,V,D).run(s,w)@m: out] in
let ideal_prob = Pr[out ← ZKIdeal(SimN,V,D).run(s,w)@m: out] in

|ideal_prob - real_prob| ≤ ε + 2 ··· (1 - σ)ˆN.

29 / 40

Zero-Knowledge: Sequential Composition

From one-round zero-knowledge we can conclude multiple-round
zero-knowledge generically!

30 / 40

Zero-Knowledge: Sequential Composition

We define “sequentially” composed “real” experiment:

module ZKRealAmp(P:HonestProver,V:MaliciousVerifier,D:ZKDistinguisher)={
proc run(s: statement, w: witness) = {

var commit, challenge, response, summary, guess,i;
i ← 0;

while(i < n){
commit <@ P.commitment(s,w);
challenge <@ V.challenge(s,commit);
response <@ P.response(challenge);
summary <@ V.summitup(response);
i ← i + 1;

}

guess <@ D.guess(s,w,summary);
return guess;

}
}.

31 / 40

Zero-Knowledge: Sequential Composition

Ideal game for sequentially composed ZK does not change.

32 / 40

Zero-Knowledge: Multiple-Run Simulator

Generic transformation of one-run to multiple-run simulator:

module SimAmp(S:Simulator,V:RewMaliciousVerifier) = {
proc simulate(s:statement) = {
var summary, i;
i ← 0;

while(i < n) {
summary <@ S(V).simulate(s);
i ← i + 1;

}

return summary;
}

}.

33 / 40

Zero-Knowledge: Sequential Composition Generically

If Sim is δ-one-run simulator then SimAmp(Sim) is a nδ-multiple-run
simulator for sequentially composed ZK:

lemma zk_seq s w m:
let ideal_prob = Pr[out ← ZKIdeal(SimAmp(Sim),V,D).run(s,w)@m: out] in
let real_prob = Pr[out ← ZKRealAmp(P,V,D).run(s,w)@m: out] in

|ideal_prob - real_prob| ≤ n ··· δ.

34 / 40

More generic derivations

Proof-of-knowledge from special soundness.

Soundness from proof-of-knowledge.

35 / 40

Use cases

Schnorr protocol (discrete logarithm).

Fiat-Shamir protocol (quadratic residue).

Blum protocol (Hamiltonian cycles, NP-complete).

36 / 40

Fiat-Shamir protocol

Completeness + sequential composition (50 lines of code);

Special Soundness (60 lines of code);

Proof-of-Knowledge (40 lines of code);

Soundness + sequential composition (30 lines of code);

One-Shot Simulator (200 lines of code).

Zero-Knowledge + sequential composition (50 lines of code).

37 / 40

Conclusions

It is relatively simple to instantiate and derive properties of
sigma-protocols in our EasyCrypt framework.

The downside of EasyCrypt formalizations is that the resulting protocols
are not executable.

In EasyCrypt formalizations are usually done at the very high-level of
abstraction.

For example, protocols are usually developed in context of abstract
groups, particular distributions, etc.

The naive compilation from high-level to low-level is not guaranteed to
preserve cryptographic properties like zero-knowledge.

38 / 40

Work in progress: Sigma Protocols in Jasmin

In the further work we implement sigma-protocols in assembly via Jasmin
toolchain.

Jasmin is a low-level programming language for high-assurance and
high-speed cryptography.

Jasmin programs can be extracted to EasyCrypt to address functional
correctness, cryptographic security, or security against timing attacks.

We derive properties for the sigma protocols in Jasmin by carrying them
over from the our ZK framework.

39 / 40

Thank you!

40 / 40

