Denis Firsov'*? and Dominique Unruh®

'Guardtime
2Tallinn University of Technology
3Tartu University

July 10, 2023

1/40

Main Goal

Implement a framework in EasyCrypt theorem prover which formally defines
notions associated with sigma-protocols and provides generic lemmas which
capture common patterns in proofs.

2/40

Main Contributions: Quick Overview

@ Formal definitions: completeness, special soundness, soundness,
proof-of-knowledge, zero-knowledge.
@ Generic derivations (in computational and information-theoretical setting):

o Proof-of-knowledge from special soundness.
e Soundness from proof-of-knowledge.

e Zero-knowledge from one-shot simulator.

@ Sequential composition.

@ Use cases: Fiat-Shamir, Schnorr, and Blum protocols.
@ Stepping stone for end-to-end verified and executable sigma-protocols.

3/40

Background: EasyCrypt

@ EasyCrypt is a theorem prover for verifying cryptographic constructions,
where protocols are specified as imperative programs and adversaries are
modelled by abstract program modules.

4/40

Background: EasyCrypt

@ EasyCrypt is a theorem prover for verifying cryptographic constructions,
where protocols are specified as imperative programs and adversaries are
modelled by abstract program modules.

@ It has four built-in logics:

a probabilistic, relational Hoare logic (pRHL);

a probabilistic Hoare logic (pHL);

an ordinary (possibilistic) Hoare logic (HL);

an ambient higher-order logic for proving general mathematical facts and
connecting judgments in the other logics.

5/40

Background: EasyCrypt

@ EasyCrypt is a theorem prover for verifying cryptographic constructions,
where protocols are specified as imperative programs and adversaries are
modelled by abstract program modules.

@ It has four built-in logics:

e a probabilistic, relational Hoare logic (pRHL);

e a probabilistic Hoare logic (pHL);

e an ordinary (possibilistic) Hoare logic (HL);

e an ambient higher-order logic for proving general mathematical facts and
connecting judgments in the other logics.

@ Also, we showed that EasyCrypt programs could be “reflected” into their
probabilistic semantics to carry out proofs which rely on more advanced
mathematical facts.

6/40

Notation

We write
Pr[r« X.fl)@m: P]

to denote probability of event P after executing procedure f with argument i of
module X at initial state m.

7/40

Background: Sigma Protocols

Every sigma protocol is designed to work with a specific formal NP-language.
The language is induced by a relation between statements and witnesses.
Then a protocol for the relation must allow the prover to convince the verifier
that the prover knows a witness for some given statement without revealing
anything else about itself.

commitment Veriﬁer(s)

Prover(s,w)
challenge

response
P Accept/Reject

8/40

Sigma protocols: Properties

@ Completeness ensures the correct operation of the protocol if both prover
and verifier follow the protocol honestly.

@ Soundness ensures that for “wrong” statements (i.e., with no witness) a
prover can convince the verifier with only small probability.

@ Proof-of-knowledge guarantees that any prover that successfully
convinces the verifier actually knows a witness (and not only abstractly
that it exists).

@ Zero-knowledge establishes that any cheating verifier cannot learn
anything about the witness when running the protocol.

9/40

Sigma Protocols: Basic Parameters

abstract theory GenericProtocol.

type statement.
type witness.

type relation = statement — witness — bool.

op in_language (R:relation) statement: bool
= J witness, R statement witness.

op completeness_relation : relation.
op soundness_relation : relation.
op zk_relation : relation.

10/40

Sigma Protocols

type
type
type

type

op verify transcript: statement — transcript — bool.

commitment.
response.
challenge.

transcript =

op challenge_set:

: Basic Parameters

commitment X challenge X response.

challenge list.

end GenericProtocol.

11/40

Completeness

Completeness ensures the correct operation of the protocol if both prover and
verifier follow the protocol honestly.

12/40

Completeness: Honest Prover

module type HonestProver = {
proc commitment (s:statement,w:witness) : commitment
proc response(ch:challenge) : response

13/40

Completeness: Honest Verifier

module type HonestVerifier = {
proc challenge (s:statement,c:commitment) : challenge
proc verify(r:response) : bool

14/40

Completeness: Game

In EasyCrypt we define completeness module to capture the interaction
between honest parties:

module Completeness (P: HonestProver, V: HonestVerifier) = {
proc run(s:statement, w:witness) = {
var commit, challenge, response, accept;
commit <@ P.commitment (s, w);

challenge <@ V.challenge(s,commit) ;
response <@ P.response (challenge);
accept <@ V.verify (response);
return accept;

15/40

Completeness: Property

The module for default honest verifier HV is derived automatically. The user
must specify honest prover HP and a completeness lower-bound 9:

op 0 : real.

lemma statistical completeness s w m: completeness_relation s w

= Pr[out < Completeness (HP,HV) .run(s,w)@m: out] > §.

“One-round” completeness must be proved manually.

16/40

Completeness: Sequential composition

One-round completeness implies completeness for sequential composition
generically. Below, the module CompletenessAmp runs honest-interaction
sequentially n-times.

lemma completeness_seq m s w n: completeness_relation s w A1 < n

= Pr[out < CompletenessAmp (HP,HV).run(s,w,n)@m: out] > &°n.

17/40

Rewinding

Definition
The module A is rewindable if

@ There exists an injective mapping f from the type Ga to some parameter
type sbits.

@ The module A must have a terminating procedure getState, so that the
execution of A.getState() in state m must return the value f(G7') without
changing the state.

Pr[r+ A.getState() @m: G4" = G Ar=f(GF)] =

© The module A must have a terminating procedure setState, so that
whenever it gets an argument x : sbits and sets G to f~'(x) if ~'(x) is
defined. Formally, let g be of type Ga then
Pr[r« A.setState(fg) @m: G4" = g] =

18/40

Zero-Knowledge

Zero-knowledge establishes that any malicious rewindable verifier cannot
learn anything about the witness when running the protocol.

19/40

Zero-Knowledge: Rewindable Malicious Verifier

module type RewMaliciousVerifier = {

proc challenge(s:statement, c:commitment): challenge

proc summitup (r:response) : summary
proc getState() : sbits
proc setState(b:sbits) : unit

20/40

Zero-Knowledge: Distinguisher

module type ZKDistinguisher = {

proc guess (s:statement,w:witness, sum:summary) : bool

21/40

Zero-Knowledge: Real Experiment

module ZKReal (P: HonestProver,V: MaliciousVerifier,D: ZKDistinguisher)={

proc run(s:statement, w:witness) = {
var commit, challenge, response, summary, guess;

commit <@ P.commitment (s, w);

challenge <@ V.challenge (s,commit);
response <@ P.response(challenge);
summary <@ V.summitup (s, response);

guess <@ D.guess(s,w,summary) ;
return guess;

22/40

Zero-Knowledge: Simulator for Ideal Game

module type Simulator (V: RewMaliciousVerifier) = {

proc simulate(s: statement) : summary

23/40

Zero-Knowledge: Ideal Experiment

module ZKIdeal (S:Simulator,V:RewMaliciousVerifier,D:ZKDistinguisher) = {

proc run(s: statement, w: witness) = {
var summary, guess;

summary <@ S (V) .simulate(s);
guess <@ D.guess(s,w,summary) ;

return guess;

}

24/40

Zero-Knowledge: Desired Property

There must exist an efficient simulator Sim so that for any rewindable
malicious verifier V, and distinguisher D the absolute difference between real
and ideal games is bounded from above by €:

op €: real.

lemma statistical zk s w m: zk_relation s w =

let real prob = Pr[out <~ ZKReal (HP,V,D).run(s,w)@m: out] in
let ideal_prob = Prlout < ZKIdeal(Sim,V,D) .run(s,w)@m: out] in

|ideal_prob - real_prob| < €.

25/40

Zero-Knowledge: Direct proofs are hard!

Proving zero-knowledge directly could be challenging. Alternative common
strategy is to derive zero-knowledge from “one-shot” simulator.

26/40

Zero-Knowledge: One-Shot Simulator

@ One-shot simulator Sim1 is a simulator which in addition to summary
returns a “success-event”:

module type Simulatorl (V: RewMaliciousVerifier) = {
proc run(s: statement) : bool X summary

}.

@ We ask for the lower-bound ¢ on that “success-event”

op 0 : real.

lemma siml_lower_bound stat m:
Pr[(succ, _) < Siml(V).run(stat)@m: succ] > ©.

@ We also ask simulator to rewind itself and the malicious verifer in case it
was not successfull:

lemma rewind sim istate m: (glob Siml(V))) = istate
Pr[(succ, _) < Siml (V) .run(s)@m:
!succ = (glob Siml (V)) = istate] = 1.

27/40

Zero-Knowledge: One-Shot Simulator

The absolute difference between success-probabilities of the real game

conditioned on the success-event and the ideal game must be bounded from
above by €:

lemma siml_zk cond3 s w m: zk relation s w =

let siml_real

= Pr[(succ, out) < ZKReal’ (HP,V,D) .run(s,w)@m: succ A out] in
let siml_ideal Pr[out < ZKIdeal (Siml,V,D) .main(s,w)@m: out] in
let succ_event Pr[(succ, _) < Siml(V).run(s)@m: succ] in

|siml_real / succ_event - siml_ideal| < €.

28/40

Zero-Knowledge: Many-Shot Simulator for One-Round ZK

Given such one-shot simulator we define simulator SimN which runs one-shot
simulator until it succeeds, but at most N times. Then we generically conclude
the following statistical zero-knowledge:

lemma statistical zk s w m: zk_relation s w =
let real prob = Pr[out < ZKReal (HP,V,D) .run(s,w)@m: out] in
let ideal_prob = Pr[out ¢~ ZKIdeal (SimN,V,D) .run(s,w)@m: out] in

|ideal_prob - real_prob| < & + 2. (1 - o) N.

29/40

Zero-Knowledge: Sequential Composition

From one-round zero-knowledge we can conclude multiple-round
zero-knowledge generically!

30/40

Zero-Knowledge: Sequential Composition

We define “sequentially” composed “real” experiment:

module ZKRealAmp (P:HonestProver,V:MaliciousVerifier,D:ZKDistinguisher)={

proc run(s: statement, w: witness) = {
var commit, challenge, response, summary, guess,i;
i+« 0;

while(i < n){
commit <@ P.commitment (s, w);
challenge <@ V.challenge(s,commit);
response <@ P.response(challenge);
summary <@ V.summitup (response);
i+—i+1;

}

guess <@ D.guess(s,w, summary) ;
return guess;

31/40

Zero-Knowledge: Sequential Composition

Ideal game for sequentially composed ZK does not change.

32/40

Zero-Knowledge: Multiple-Run Simulator

Generic transformation of one-run to multiple-run simulator:

module SimAmp (S:Simulator,V:RewMaliciousVerifier) = {

proc simulate(s:statement) = {
var summary, i;
i+« 0;

while(i < n) {
summary <@ S (V) .simulate(s);
i+—1i+1;

}

return summary;

33/40

Zero-Knowledge: Sequential Composition Generically

If Simis &-one-run simulator then SimAmp (Sim) is a nd-multiple-run
simulator for sequentially composed ZK:

lemma zk _seq s w m:
let ideal_prob = Pr[out < ZKIdeal (SimAmp (Sim),V,D) .run(s,w)@m: out] in
let real prob = Pr[out <~ ZKRealAmp (P,V,D).run(s,w)@m: out] in

|ideal_prob - real_prob| < n - §.

34/40

More generic derivations

@ Proof-of-knowledge from special soundness.
@ Soundness from proof-of-knowledge.

35/40

Use cases

@ Schnorr protocol (discrete logarithm).
@ Fiat-Shamir protocol (quadratic residue).
@ Blum protocol (Hamiltonian cycles, NP-complete).

36/40

Fiat-Shamir protocol

Completeness + sequential composition (50 lines of code);
Special Soundness (60 lines of code);

Proof-of-Knowledge (40 lines of code);

Soundness + sequential composition (30 lines of code);
One-Shot Simulator (200 lines of code).

Zero-Knowledge + sequential composition (50 lines of code).

37/40

Conclusions

@ It is relatively simple to instantiate and derive properties of
sigma-protocols in our EasyCrypt framework.

@ The downside of EasyCrypt formalizations is that the resulting protocols
are not executable.

@ In EasyCrypt formalizations are usually done at the very high-level of
abstraction.

@ For example, protocols are usually developed in context of abstract
groups, particular distributions, etc.

@ The naive compilation from high-level to low-level is not guaranteed to
preserve cryptographic properties like zero-knowledge.

38/40

Work in progress: Sigma Protocols in Jasmin

@ In the further work we implement sigma-protocols in assembly via Jasmin
toolchain.

@ Jasmin is a low-level programming language for high-assurance and
high-speed cryptography.

@ Jasmin programs can be extracted to EasyCrypt to address functional
correctness, cryptographic security, or security against timing attacks.

@ We derive properties for the sigma protocols in Jasmin by carrying them
over from the our ZK framework.

39/40

Thank you!

